Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3

4. 525 / 1

Signalling and Prediction of Failures in Discrete
Control Devices with Structural Redundancy
| M. A. GAVRILOV

In solving problems of providing reliable operation of automatic
control devices, a great deal of attention is devoted to the use of
methods involving the application of structural redundancy.
These include all possible methods of duplicating individual
elements within units, as well as the more common methods of
providing redundancy of all the necessary elements and units on
the whole with the least possible number of additional elements.
The ever-increasing practical use of methods of structural
redundancy is a result of the fact that, in present complex
automatic systems, the control devices require such a large
number of individual elements to perform their functions that
even though the elements may have a very high reliability, the
necessary reliability demanded of the entire device cannot
be achieved.

A number of works'—® js devoted to the question of the
introduction of structural redundancy and the determination
of the minimum number of additional elements necessary to
achieve the prescribed reliability of the device on the whole.
For discrete control devices it is most natural and suitable to
examine the required value of operating reliability of the device
as being prescribed by a certain number of elements which
simultaneously fail during operation while nevertheless per-
mitting the device to perform accurately the control algorithm
assigned to it”.

The author of the present report showed® that when the
problem is treated in this manner, the determination of the
minimum number of additional internal elements necessary to
achieve a given reliability completely coincides with the task
of determining the minimum number of additional symbols in
the construction of correcting codes with correction of the
corresponding number of errors. In the same article a method
was given for constructing tables of states which provide for
a realization of the structure of a discrete control device having
the required reliability.

The proposed method links the problem of constructing

such a device to the distrubution of the states of its internal -

elements along the vertices of a many-dimensional cube of
single transitions in such a manner that the number of transitions
(distance) between the vertices, selected for the corresponding
stable states of the device, would be no less than:

D=2d+1 ‘ (1)

where 4 is the number of simultaneously failing elements with
which the devices must still exactly perform their control
algorithm.

In differentiating the demands on rehablhty (namely, separa-
ting them from the viewpoint of the number of simultaneously
failing elements), first, into that for which' the device must
accurately perform a given control algorithm and, second, into

‘

that for which it must not provide any actions at its outputs, the
value of the distance between vertices selected for the stable
states must be no less than:

D=2d+4+1 @)

where 4 is the number of simultaneously failing elements in
addition to d for which the indicated second condition of
reliable operation of the device must be fulfilled.

In discrete types of devices which have reliability as a result
of structural redundancy, the required reliability is retained
only until the moment of onset of permanent failure of even one
of the elements.

In fact, let the prescribed probability of failure of the entire
device on the whole require that the given control algorithm be
exactly performed with the simultaneous failure-of d elements.
Then, with a permanent failure of any one of the elements, the
device will capably perform the control algorithm only upon
the simultaneous failure of d — 1 elements; that is, it will have
a probability of complete failure which is less than prescribed.

Particular importance is therefore devoted to rapid signalling
of failure of individual elements or their prediction, which
permits one to take timely measures to replace the faulty
elements or other measures which will return the probability
of failure of the entire device to its prescribed value. The present
report is devoted to an examination of the fundamental possibil-
ities of providing such signalling or prediction for automatic
control devices designed on the basis of the principles described
by the author3. ‘

First it is shown that the table of states constructed according
to the principles contains all the necessary information on
failure, both generally for all elements as well as for each of
them individually, and, even more, on the nature of the failures.

Those states of internal elements which correspond to the
stable states of the corresponding table of transitions and which
are distributed, as was pointed out above, in the vertices of a
many-dimensional cube of single transitions with a distance one
from the other of not less than D, are called basic. To each of
these states there must correspond a particular state of outputs
which provides for the performance of the prescribed control
algorithm.

Let the number of inputs of the discrete device be equal to a
and let it be given that, to perform the control algorithm with a
prescribed degree of reliability, that is, in the presence of
simultaneous failure of d internal elements, it is necessary
to have K internal elements. Then each of the. basic states may
be characterized by a certain conjunctive member of a Boolean
function of length a + K. In accordance with this the table
of states contains, on the left-hand side, a + K columns of
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which a characterizes the states of the inputs and K charac-
terizes the states of the internal elements. The binary number
characterizing the state of the internal elements corresponds
to a particular vertex of the many-dimensional cube, selected
in distributing the given basic state.*

The failure of any element is characterized by a change in
the binary number, corresponding to a given basic state, from
zero to one or one to zero. The first is called a 9‘—)1 type
failure and the second a 1— 0 type failure. Each such failure
transfers the basic state to an adjacent vertex of the many-
dimensional cube. The simultaneous failure of any two internal
elements transfers the basic state to a vertex two units removed
from the vertex selected for the given basic state; it is adjacent
to any vertex to which the basic state was transferred by the
failure of any one of these two elements.

In order to provide exact performance of the control
algorithm upon the failure of internal elements, each of the
states to which the basic state is transferred upon the failure of
any number of elements within the prescribed limits (that is,
inclusive to d) must compare in the right-hand side of the table
of states to the same state of outputs as the basic state. Therefore,
for each stable state of the table of transitions, for the case of
structural redundancy, there must correspond a particular
combination of states consisting of the basic state and all the
states to which it transfers upon failure of the internal elements.
All of these states are adjacent to one another, forming a certain
multiple of adjacent states. This multiple is called a set of basic
states. '

Frist it is shown that the set of adjacent states, together with
the basic states, may be described by a symmetrical Boolean
function whose active numbers represent a natural series of
numbers from K — d to K.

Let there be any state f;, corresponding to one of the basic
states and let this state be characterized by a row in the table
of states containing K; zeros and K, ones, where K; + K, = K.
Then, with d = 1, the collection of adjacent states 2 f;; contains
all the states differing from the basic by the replacement of one
variable by its reciprocal. More precisely, they are K, while K;
of them corresponds to a failure of the type 0— 1 and K, to
a failure of the type 1— 0. It is easy to see that the sum of these
states may be characterized by the symmetrical function:

Z fu=8Sk-1(%1, %50y XKys XKy4 19 XKy420 o000 XKy +K2)

if the basic state is considered a symmmetrical function of those
variables with an active number equal to K, namely:

Jio=Sk (X1, X2, 00y XK19 XKye 19 XK1 420 00> xK,+Kz)

The sum of the basic and set of adjacent states is thus
characterized by the symmetrical Boolean function:

Jio+Z fi1=Sko1, k(F1, Xas oo Xy X 15 Xkt 25 v vs XKy +K5)

If d =2, the set of adjacent states consists of all states
differing from the basic by the replacement of one variable by
its reciprocal, the number of which, as was pointed out, is equal
to K = C'%, and two variables. The number of the latter is
obviously equal C%, and since each of them differs from "the

* All references made below to internal elements with -an identical
base pertain to inputs and sensing elements.

basic by a change having a value of two variables, their total
2 f;s corresponds to the symmetrical function:

Zfi=8,22(X1, %2, .., Xk, 551(,“5 XKysg0 00 xK1+K2)

The Boolean function characterizing the basic state and the
entire set of adjacent states is thus a symmetrical function of the
type:

JotZfu+Zfm
=SK—2,K—1,K‘(555 5523 teey fK}’ xK“,p XKHz’ ceey xKi+Kz)

It may be proved in an analogous manner that in the general
case, with the simultaneous failure of 4 internal elements, the
basic state and the set of adjacent states may be characterized
by a symmetrical Boolean function of the type:

Sk-a,k-d+ 1, .., PLCITE 7T XK19 XK1 4 19 XK1420 00> xK1+K2)

Thus, the class of reliable structures of discrete devices is,
with respect tointernal elements, a class described by symmetrical
Boolean functions of a special type, which facilitates their
realization since these functions have been most widely studied
and may be economically realized with the aid of different types
of threshold relay elements, including electromagnetic relay
elements with several windings®.

The basic state is designated as f; and the set of adjacent
states corresponding to it as N;, assuming that f; + N; = F;.

‘The table of states of a discrete control device consists on
the left-hand side of all sets F; combined with the corresponding
values of inputs. For each of these sets there corresponds on the
right-hand side of the table, as was pointed out above, a state
of outputs which provides for the performance of the control
algorithm. One more output is added for which is included in
the table of states a zero for each of the basic states and a one
for any of the states which are included in the sets of adjacent
states. :

Since the latter corresponds to the failure of any one or to
the simultaneous failure of several internal elements, the appear-
ance of a one at this output occurs only by means of a decrease
in the reliability of operation of the discrete device and may be
used to signal the presence of a failure.

For example, let there be a discrete device with three inputs
and one output (Figure I) and an action, equal to one, must
appear at the latter in the subsequent sequence of change of the
states of the outputs:

— e O
——O O
-0 OO

011

Any subsequent change of inputs must lead to the appearance
of an action at an output to zero, while the further appearance
of an action at the output equal to one occurs only by the
repetition of the indicated sequence of change of the states of
the inputs. With any other sequence of change of the states of the
inputs, the action at the output must remain equal to zero.

The corresponding table of conversions is given in Table 1.
Here it may be seen that it is necessary to provide for four stable
states, which is possible with the aid of two internal elements.

When it is necessary that the aforementioned discrete device
performs exactly a preassigned control algorithm in the event
of the simultaneous failure of one of the internal elements, five
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internal elements are required, as seen in Table 5 of reference 3.
The following distribution for the basic states is chosen: '
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Then the table of states will have the form shown.in Table 2.
In agreement with what was mentioned above, let us add the
output Cy,  in the column of which are written zeros in
all the rows of the table of states corresponding to f; and ones
in all the rows corresponding to N; (Table 3). Then this output
will signal the presence of a failure of any one or several of the
internal elements.
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If one places the action from this output into a computer
and determines the number of times that actions equal to one
appear at this output during a certain time interval, the answers
from the computer may be used to predict an approximation
of reliable operation of the device.

The described principle of signalling and prediction has
significant advantages in the sense that neither the signalling nor
prediction requires the introduction of any additional internal
elements. Usually the performance of these functions relies upon
special units of the discrete device which require elements having,
in principle, a reliability as much as one order of magnitude
greater than the elements which make up the discrete device itself.

In the design examined above, comprising a structure of
signal outputs based on actuating devices already having internal
elements, and assuming that the connections between these
devices and the sensing signal and predicting devices have
100 per cent reliability, one would expect that the signalling of
failure would have absolute reliability in principle.

In fact, only two mutually exclusive events may occur:
(@) not one of the internal elements is faulty. Then the actions

equal to one appear at the corresponding operating outputs .

and at the signal output the action is equal to zero; (b) failure

00000 10110 0101 1 11101 ofoneorseveral internal elements occurs within the limits of d.
10000 00110 11011 01101 Then an action equal to one appears both at the signal and
01000 11110 00011 10101 operating outputs.

B 00100 Fe 10010 Fy 01111 F, 11001 It is noted that achieving reliable operation by means of the
00010 10100 01001 11111 introduction of structural redundancy according to the principles
0000 1 10111 010 1 0 11100 previously presented by the author® pertain to the ‘internal

‘ elements of the device as a whole, that is, both to the actuating
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and the reacting devices. Therefore, with respect to failures of the
actuating organs, the device retains its ability to perform
exactly the control algorithm upon the failure of either one or,
simultaneously, all of the actuating devices of a given internal
element for the conditions when these failures are all of a
single type.

The described principle of designing signal circuits makes it
possible to provide separately for signalling the number of fail-
ures greater than d, including those located between the limits of
d 4+ 1 and d + 4. Additional outputs must be added for this
purpose. This requires that ones be written in the specific rows
in the appropriate columns of the table of states; namely, for
signalling failures of elements within limits fromd +- 1 tod + 4
in the rows corresponding to failures in these limits, and for
signalling a large number of failures in the rows corresponding
to unused states. .

It is obvious that the signalling of failures may be not only
general but also specific, or, for each of the internal elements
of the device separately. For this purpose one must have for
each of them an individual output, for which there must be
written in the columns of the table of states ones for all states
differing from the basic by the change in value of the correspond-
ing variable. For example, to signal the failure of element X; in
the above case, ones must be written for each first row of the
sets NV; for the corresponding output.

Table 3 gives the corresponding values of outputs for each
of the internal elements. The realization of such outputs pro-
vides, in the event of faulty elements in the device, for advance
notification as to which of the internal elements is malfunc-
tioning or, with prediction, an approximate indication, per-
mitting timely replacement or adjustment of the element for
proper action.

Obviously it is possible to provide not only for signalling of
failures of individual internal elements but for the separate
signalling -of the nature of these failures as well. For example,
in Table 4, for the internal element X; examined above, are
shown the operating states corresponding to failures of the
type 0— 1 [Table 4(a)] and failures of the type 1—0
[Table 4(b)].

Table 4
Xl XZ X.’i X4 X5 Xl X2 Xa X4 XS
1 0 0 0 0 0 0 1 1 0
1 1 0 1 1 0 1 1 0 1
(@) )

In conclusion some of the problems of realizing signalling
and prediction networks are considered. The circuit of each
output in the structure of a multi-cycle discrete device must
contain actuating devices of both internal and sensing relay
elements. The signal circuits must contain actuating devices of
only internal elements. Therefore the rational design of the
structure of a discrete device would be that shown in Figure 2,
namely, a structure in the form of a certain [1, K] terminal net-
work having at its outputs all the functions of f; and N, and
containing the actuating devices of only the internal elements,
and an [M, N] terminal network containing the actuating devices
of only the sensing elements.

As was pointed out above, the functions which realize the
basic states together with the sets of adjacent states are sym-
metrical with the operating numbers from K — d to K and for
their realization it is suitable to use so-called ‘threshold’ elements.
When such elements are used it is advantageous to use the
structure of the discrete device having a form shown in Fig-
ure 2(b), where the [1,K] terminal network is based on. thresh-
old elements according to the number of basic states. The [M, N]
terminal network has the same make-up as that shown in
Figure 2(a), while the output circuits for signalling and predic-
tion of failures are derived from the outputs of the threshold
elements by means of their series connection (providing an ‘and’
operation) and from circuits corresponding to the function f;.
The latter may also be designed with the aid of threshold elements
having symmetrical functions with the operating number K.

In addition it is noted that, in the case examined above, it is
most rational from the viewpoint of the simplest physical
realization of the structure of a discrete device to choose the
operating levels of the symmetrical functions not from K — d
to K but from 0 to 4, while simultaneously taking not the
variables but their inversions.

In conclusion one should note that the method considered

previously by the author3, as well as everything discussed in
this report, refer to the case in which the probability of failure
for all internal elements has a single value, the failures
are symmetrical (that is, the probability of failures of the
type 0— 1 is identical to that of type 1— 0), and, in addition,
failures. of individual elements are mutually independent. Con-
ditions differing from these necessitate a somewhat different
approach to determining the minimum number of elements and
the distribution of the states. However, the principles of de-
signing signal circuit and of prediction remain the same, with
the exception that the functions characterizing the basic sets
and the sets of adjacent states may not prove symmetrical.
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A Digital Optimal System of Programmed Control and
its Application to the Screw-down Mechanism of a Blooming Mill
~ S.M.DOMANITSKY, V.V. IMEDADZE and Sh. A. TSINTSADZE

Introduction

Digital servo programmed-control systems are finding con-
tinually wider applications in various branches of industry:
in particular, they are used for the automatic control of screw-
down and other mechanisms of rolling mills, for the control of
various moving parts in control systems for metal-cutting
machine tools, and in a nuimber of other instances. The operation
of such mechanisms normally falls into two stages. In the first
stage the device must choose or compute an optimal programme,
working on the basis of information about the requirements for
the technological process, about the condition of the plant,
about external perturbations, etc. In the second stage the given
programme must be carried out according to an optimal law.
The term ‘optimal law’ is normally taken to mean the carrying
out of the given displacements with the maximum possible
response speed and with the required accuracy; in addition a
condition is often included covering requirements on control
response quality.

While the function of choogsing an optimal programme is
not necessarily inherent in the digital control system itself,
particularly when it operates in a complex installation with a
controlling computer, the function of carrying out the given
displacements according to an optimal law must still be organic-

ally inherent in the digital servo system. If this requirement is '

not satisfied, such systems cannot be considered fully efficient,
since for many mechanisms, e.g. manipulator jaws, shears and
rolling-mill pressure screw-down, the response speed and
accuracy determine the productivity and output quality of the
whole line.

A system of programmed control has been developed by the
Institute of Electronics, Automatic and Remote Control of the
Academy of Sciences of the Georgian S.S.R. in cooperation
with the Institute of Automatic and Remote Control of the
U.S.S.R. Academy of Sciences. The basic unit of this system
is a digital optimal servo system which has a number of character-~
istic properties. The electric motor drive of the optimal system
works at accelerations that are maximal and constant in magni-
tude. This ensures the greatest response speed and simplifies the

"design of the computing part of the programmed-control
system. The required system accuracy is ensured by the digital
form in which the programme is given and executed. The small
quantity of information processed in unit time has made it
possible to use a pulse-counting code rather than a binary ore,
which improves the reliability and interference-rejection pro-

perties of the system. The system is entirely built out of ferrite *

and transistor elements.
This report gives a general description of the digital optimal
programmed-control system, and also a practical example of its

application to the automatic control of the screw-down mecha-
nism of a blooming mill; this device has passed through
laboratory and factory testing, and by the end of 1962 it was
introduced into experimental service at the Rustavi steelworks.

Design Principles of the Programmed-control System

The basis of the system developed for programmed comtrol
is the optimum principle; the execution of the required displace-
ment takes place at limiting values of the restricted coordinates,
especially of the torque and rotation speed of the motor.

For the case where the drive control system has negligible
inertia, Figure 1 will clarify the above; it shows the law taken
for the variation of the control action F,, and the curves of
motor torque M,, and speed n. The figure shows that during
run-up and braking the drive maintains the constant maximum
permissible value of torque developed by the motor. When
executing large displacements, after the motor has reached its
maximum speed #ya, it is automatically switched over by the
drive circuit to operate at that constant speed (point MS on
Figure 1). The instant of braking (point T,) is chosen by the
control system such that only a relatively short path remains
to be traversed up to the instant when the speed is reduced to
10-12 per cent of the maximum (point CS). The execution of the
rest of the path to the required low speed is automatically
performed by the drive circuit, and ensures maximum accuracy
in carrying out the programme. Figure I shows that the variation
of drive speed with time follows a trapezoidal law. For small
required displacements the motor does not have time to run up

to its maximum speed, and the speed variation follows a

triangular law.

The above-mentioned properties of the drive allow the
controlling part of the programmed-control system to be
considerably simplified, since in this event it only has to generate
and execute commands for starting the drive in the required
sense, for braking and for stopping the drive.

The design logic is very simple for that part of the control
system whose purpose is to start the drive in the required sense
and to determine the instant for generating the command to
stop the drive; it is suitable both for control of low-power
drives that have no links with appreciable inertia, and also for
control of high-power drives with large inertia. The required
displacement path and sense of rotation of the motor are deter-
mined by comparing the given programme with the actual
position of the controlled mechanism (to give an error signal).
During the execution process the path traversed is continuously
compared with the initial error; the command to stop the drive
is generated at the instant when these two quantities become
equal. ’
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The programme is given in terms not of previously defined
initial errors, but of absolute values of position-coordinates for
the controlled mechanism. This avoids the possibility of errors
accumulating from excution to execution, and also the need for
the controlled mechanism to be resting initially in a closely
defined position.

The part of the system that determines the instant for the
command to start braking has a relatively more complex
design logic, and also takes different forms in systems for con-
trolling the two different types of drive mentioned above.

For systems controlling inertia-free drives the ratio between
the paths traversed on braking S, and on the run-up S, is-a
constant and equal to the ratio between the absolute values of
acceleration on run-up a, and on braking a;:

Sb ar_
==k )

Taking into account the condition that should be satisfied:
S + Sb = A

where A is the required excution path (1 e. the initial error),
one gets

A=S,(1+k) )

This expression defines the design logic for the part of the
system determining the instant for the command to start
braking: the path traversed by the drive during the run-up is
continuously multiplied by the fixed quantity 1 + k, and when
the resultant quantity becomes equal to the initial error A, then
the command is generated to start braking."

For large displacement, when the drive has time to run up
to its fixed maximum speed, the full displacement path must
consist of three terms:

A=S8,+85,+ S,

where S, is the path traversed at the constant maximum speed.
By using eqn (1) it is found that

A=S,(1+k)+ S, - B

This expression shows that the device for determining the
instant to start braking should be designed on the following
principle: the path traversed during the run-up is continuously
multiplied by 1 + k; to the value obtained at the instant of
reaching the maximum speed the path traversed at that speed
should continue to be added; and when the resultant quantity
becomes equal to the initial error, then the command should be
generated to start braking. It can readily be seen that expres-
sion (2) is a particular case of expression (3).

It has been assumed in the above discussion that the drive
accelerations on run-up braking are constant, therefore their
ratio k is constant also. But in practice £k may vary between
certain limits, which are not actually very wide; hence its maxi-
mum possible value is set into the computing device in question.
With k smaller than the maximum, the last few millimetres of
the path will be executed at a low speed, as has already been
pointed out.

But in those cases where it is partlcularly vital to minimize
the time of execution, self-adjustment may be introduced into
the control system for the quantity & set into it. It is simplest to

operate the self-adjustment according to the results of the
completed execution, and for the self-adjustment criterion one
should take the minimum both of the path length executed at
low (creep) speed S, and also of the overrun path S,, beyond
the required point.

The ratio of the path A — §,,, to the run-up path is denoted
by y, and suffixes are given to all symbols as follows: 1 to
indicate the previous action and 2 to indicate the next action.
Then one can write

A —Sus1=71"Sn
Since the creep speed is small enough one has:
Al = Srl (1 + k) + Scsl + Smsl

Since the aim of the self-adjustment is to establish the
equation '

'}’2=1+k
one gets
AI _Smsl =Sr1 V2 +Scsl
whence .
y =A1_Sms1_scs1 AI msl_Scsl
2 Srl AI_Smsl
71
Finally one has:
1 Scsl )
V2=r1\ T e 4
z 1< Al _Smsl .

Employing an analogous argument. for the case of overrun
beyond the required point, one can write to a sufficient accuracy

S, .
V2=71 (1 —KTS—‘L;> ()

where S, is the overrun on the previous action.

Expressions (4) and (5) indicate the design logic for devices
to give self-adjustment of the quantity k set into the system.

In control systems for high-power drives the presence of
large inertia means that the current, and hence the motor
torque, does not vary in a stepwise manner as shown in Figure 1,
but much more slowly. This is evident from the oscillogram
given in Figure 2, recorded for the motor of a blooming-mill
screw-down mechanism. )

For this reason, and also because considerable static loading
is present, the motor speed, while varying with time in a roughly
triangular law, lags behind the voltage during the run-up, and
after the start of braking there no instantaneous reduction
in speed; .n fact it even goes on increasing for a certain
time. Hence the ratio of the complete path to the run-up path
required to the condition for optimal operation, which is a
constant in the case of relatively low-powered drives with fixed
characteristics, proves here to depend on the magnitude of
the full action path itself, this dependence being of a complex
non-linear nature. The relation y == f(A) has been derived
analytically for the screw-down mechanism of particular bloom-
ing mill and has then been checked on the mill itself, as shown
in Figure 3. It should be noted that the curves for upwards and
downwards motion are somewhat different, and the graph in
Figure 3 has been drawn from certain averaged-out values.
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In the programmed-control systen{ developed for the
blooming-mill screw-down mechanism, the complete range of
possible displacement values has been split into eight groups:

(1) less than 16 mm

(2) 16-32 mm

(3) 32-48 mm

(4) 48-64 mm

(5) 64-96 mm

(6) 96-128 mm

(7 128-192 mm.

(8) greater than 192 mm.

The use of narrowé;' intervals for small A is explained by the
nature of the curve y = f(A), whose slope gradually diminishes.
The choice of the limits for the ranges was determined by the
ease with which the given division could be engineered.

A special device forming part of the controlling part of the
system automatically estimates the value of the initial error
before each action, determines the group into which it falls, and
sets up the mean value of y corresponding to that group. The
execution process itself proceeds similarly to that for the control
of relatively low-powered motors, the nature of it being optimal
in this case also by virtue of the fact that the run-up and braking
" accelerations are still constant and correspond to the maximum
permissible torque value. It is only in the first two groups, for
rarely met small displacements, that the excessively wide limits
of variation of y make it practically impossible to combine the
optimum principle with accuracy requirements. Hence for the
first group an action is used that is from start to finish at a lower
speed equal to 10-12 per cent of maximum, while a limited
speed is used for the second group.

If it is necessary to introduce self-adjustment of the quantity Y
set into the control system, in this case it is evidently most
desirable to apply the principle of altering the y for a given
group by the same increment at each repetition of a A corre-
sponding to that group. A very complex installation would have
to be designed in order to be able to apply the principle of self-
adjustment of y after the very first action.

Operation Algorithm of the Programmed-control System for the
Screw-down Mechanism of a Blooming Mill

A system designed according to the above principle for con-
trolling high-powered drives has two memory devices for rolling
programmes :

(1) A static programme store (SPS) for long-term storage
of fixed programmes specified according to the technological
set-up for rolling at the works—40 programmes in all, with a
maximum number of passes up to 23.

(2) A variable programme unit (VPU ) for programmes that -

change often and are not stored in the SPS. There are two
means for recording programmes on the VPU: (@) Manual
recording using a telephone dial, and () Automatic recording
of a rolling programme carried out under manual control by
an operator. This allows one to use the system for automatically
rolling a series of roughly identical unconditioned ingots for
which no fixed programme is yet in existence. The operator uses
his experience to roll the first of this series of ingots, the gap
sizes set on the rolls being automatically recorded on the VPU
during the rolling; the remaining ingots of the series are then
rolled according to this recording.

i
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As well as these methods of use, the VPU can also be con-
nected to a computer calculating optimum rolling program-
mes. A single programme containing up to 35 passes may be
recorded on the VPU.

In the developed system the size of the required gap between
the rolls is given in the form of a ten-digit binary number, ex-
pressed in millimetres and equal to the distance from the initial
point of a given position on the upper roll.

The operational algorithms for the systems of control from

the SPS and from the VPU are basically identical; they contain

the following operations or elements:

(1) Choice of operating régime (automatic operation from
SPS or from VPU).

(2) Choice of the necessary programme (when workmg
from SPS).

(3) Setting up the computing equipment to the initial position.

(4) Feeding in, from the programme store, of information
on the given posmon for the upper roll.

(5) Determination of the actual position of the upper rol]
(interrogative operation) and computation of the 1n1t1a1 error
signal.

(6) Determination of the determination of rotation of the

motor.

(7) Setting up the value of the coefficient y.

(8) Start of operation. ]

(9) Attainment of maximum speed by the drive.

(10) Determination of the instant for braking to start,
generation and execution of the relevant command.

(11) Transition of the drive to creep speed.

(12) Determination of the instant for stopping the drive,
generation and execution of the relevant command.

(13) Transition from the given pass to the next one, all the
operations from (3) to (13) then being repeated.

All the operations are carried out automatically except for
(1) and (2) where the operator has to press the relevant push-
buttons.

The automatic recording of a programme on the VPU with
manual control follows this algorithm:

(1) Choice by the operator of the relevant régime.

(2) Setting of the upper roll to the required position.

(3) Setting up the computing equipment to the initial position.

(4) Interrogation of the measuring equipment to give the
position of the upper roll, and translation of the resulting in-
formation into binary code.

-(5) Transmission of the information to the VPU.

(6) On proceeding to the next pass, all the listed operations
from (2) to (5) are repeated.

Operations (3), (4) and (5) are carried out automatically
one after the other.

A programme can be set manually into the VPU using the
telephone dial while the system is in operation from the SPS.

Block Diagram of Programmed-control System

The block diagram of the control system is shown in Figure 4.
One of the fundamental elements of the system is a measuring
unit MU of original design. It fulfils two functions: (1) on
receiving an interrogation command it makes a single deter-
mination of the actual position of the upper roll, and gives out
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a number of pulses equal to the gap between the rolls in milli-
metres, and (2) it signals the path traversed, giving out during
the execution process a pulse for every millimetre traversed. In
order to carry out these tasks the MU has two independent
channels, one each for interrogation and for execution. It is
linked to the screw-down mechanism by a synchro transmission.
The interrogation operation takes place when the rolls are
stationary and during the rolling of the metal.

A reversible binary counter RC is used to determine the
magnitude of the initial error signal A, to derive the stop com-
mand and to record the rolling programme on the VPU. For
convenience in the design of the computer section, the counter
determines not A but its complement A = C — A. Here C=1-027
is the counter capacity. The demand (D) in the form of a ten-
digit binary number in direct code is introduced into the RC
by a parallel means. Then the interrogate command is sent out,
and the RC receives from the MU a number of pulses (®) corre-
sponding to the actual gap between the rolls expressed in the

complementary code ® = C — @, Hence the resultant number
in the counter is D + ®. Two cases arise:

(1) D < ®. In this case the upper roll must be displaced
downwards by an amount A = ® — D, In the counter one gets:

D+®=D+(C—®)=C—(®—-D)=C—A=A

(2) D > ®. In this case the upper roll must be displaced

upwards by an amount A = D — @, So that the quantity A
should be derived in the counter also in this event, interrogation
pulses must be added to D only till the counter is full; from
that instant the switch SW puts the counter into the subtraction
mode, and the arrival after this of the number

(C—®)~(C—=D)=D—0=A
of pulses from the MU gives in the counter the quantity
C—-A=A

During the execution the counter always operates in the
addition mode. When it receives from the MU a number of
pulses equal to A, it overflows

A+A=C—A+A=C

and gives a pulse from its last digit that is used in the command
unit CU1 to generate the ‘stop’ command.

A straightforward logic designed into the command unit
CU1 generates the command ‘up’ or ‘down’ according to
whether the binary counter has overflowed or not during the
interrogation process. These commands are passed to the logic
unit for the drive control.

A transfer register connected to the reversible counter and

repeating all its actions serves for the transfer of the quantity A
derived in the counter to the device for determining the coeffi-
cient y and to the non-reversible binary counter BC that serves
to determine the instant for giving the command to start brak-
ing. It is also used when a programme carried out by a rolling
operator is being recorded on the VPU. In this event the re-
versible counter is put into the read-out mode, and then inter-
rogation of the MU is carried out. As a result one obtains in the
counter and the transfer register the magnitude of the gap
between the rolls in direct code: ‘

C~®=C—(C—D)=d

This information is read over in the transfer register and trans-
ferred to the VPU by a parallel means.

The frequency divider FD serves to generate the various
values of the coefficient y. It consists of a normal binary counter
to the cells of various digits of which are connected the inputs
of switches K4-K10. Thus, for example, if the outputs of the
first, third and seventh digits are connected to any switch, then
when 128 pulses arrive at the input of the frequency divider
from the MU, 64 + 16 + 1 = 81 pulses will reach the switch. -
If the output of this switch is connected to the input of the
third digit of the braking binary counter, then evidently the
coeflicient y = 81/128 - 4 == 2-53.

The role of the device described later for determining the
quantity y consists in opening whichever of the switches K4-K10
will set up the required value of y for a given A.

Since A has already been recorded in the braking counter,
therefore when A/y pulses have been received from the MU the
counter becomes full and its last digit gives out a pulse that is
then used in the command unit CU1 for forming the braking
command, realized by the drive control logic unit.

If, before the braking counter becomes full, the drive has
time to run up to its fixed maximum speed, then from that in-
stant all the switches K4-K10 are closed, and by opening
switch K3 the number of pulses originated by the measuring
unit is passed to the first digit of the counter. This carries out
the logic for determining the instant to start braking, as already
described.

The next section describes the devices for automatically
limiting the maximum drive speed and for transition to creep
speed during the braking process. The path length traversed at
creep speed is 3—5 mm.

The system is started up automatically by a photoelectric
relay system at the instant when the metal leaves the rolls. But
because the motor has a delay in starting of 0-6 sec, a correspond-
ing advance must be introduced. This is achieved by a special
assembly that indirectly measures the speed of the metal and
generates a pulse to start the system calculated so that the drive
starts at the instant when the metal leaves the rolls. This as-
sembly is not shown in Figure 4.

The system- also contains a number of elements that carry
out various logical functions required for the sequencing of the
operations, for their automation, etc. In particular, a photo-
electric relay unit is mounted on the mill for automatic drive
starting.

The system provides for control of the most responsible
operation—the stopping of the drive at the correct time. For
this purpose the reversible counter is duplicated. The outputs
of both counters are fed to a special control logic unit. If over-

flow pulses are not generated simultaneously by both counters,

this unit gives out both a stop pulse and a fault signalling pulse;
if both overflow pulses arrive at once, it generates only a stop
pulse.

Certain Basic Elements of the Control System

(1) Electric Motor Drive and its Control

The electric motor drive for the blooming-mill screws
is designed as a generator-motor system. A 375 kW d.c. generator
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powers the two 180 kW screw-down motors connected in
series, and is controlled by a 4-5 kW amplidyne.

The drive must provide for the execution of a prescribed
path according to the optimal speed curves given in Figure 1.
In this connection the following requirements are placed on
the drive:

(1) In order to obtain the maximum response speed, the
motor current must be held equal to the maximum permissible
during run-up and braking.

(2) Limitation of the maximum rotation speed of the motor
is necessary.

(3) During the braking process an automatic transition must
be ensured to the creep speed n = ny;n.

(4) Heavy braking is necessary when the drive is finally
stopped from creep speed.

The layout of a drive satisfying these requirements is shown
in Figure 5. The control winding W1 of the amplidyne is con-
nected tothe output of a three-state semiconductor trigger circuit
which receives control pulses from the drive control logic unit.
The run-up and braking of the drive take place at an invariable
value of motor current I, = (I,,)max, Which is achieved by the
use of strong negative current feedback in the armature circuit
(feedback winding W4), with a feedback gain of 8-10. For
large error signals, when the voltage at the generator terminals
reaches its maximum value, depending on its polarity one of the
stabilovolts ST strikes. This causes the maximum-speed relay
RMS to operate and apply the generator voltage to winding W3.
The current flowing in this winding sets up a negative feedback
that limits the generator voltage and consequently the motor
rotation speed.

The creep speed is obtained by means of the twm—wmdmg
relay RCS. This relay is operated at the start of the execution
by one of the windings being energized. At the start of braking
this winding is de-energized, and the relay is held on only by the
action of the second winding, which is energized from the
generator output voltage; as this voltage falls in consequence
of the braking process, the relay drops out and causes a strong
negative feedback to be applied, which together with the change
in the polarity of the current in the amplidyne control winding
sets up a speed that is about 10 per cent of the maximum.
Efficient braking from this speed on stopping is achieved by the
self-damping of the generator on the removal of the control
action from the control winding W1.

As stated above, the drive control equipment consists of a
three-state power trigger circuit whose output is connected

through a balanced semiconductor amplifier to the amplidyne

control winding W1.

In order to obtain the required variation in the control
action, pulses must be supplied to the appropriate inputs of the
trigger circuit. The order of application of the pulses depends on
the direction in which the upper roll has to be displaced; it is
developed by the drive control logic unit.

Signals are fed by six channels to the input of this unit from
the digital control system and the drive system. These commands
are as follows: selected direction of motion (up or down),
clearance to start, braking, transition to creep speed, and stop.
From these commands the logic circuit derives the signals
that go to the appropriate trigger circuit inputs.
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(2) Static Programme Store

The static programme store SPS (Figure 6) is a matrix
memory device in which binary numbers forming a programme
are recorded by means of networks of semiconductor diodes.
Tt consists of a distributor, a programme unit and a numerical
unit.

The distributor (see the bottom line of Figure 6) sequentlally
sends out a read pulse to the programme unit (second line of
Figure 6) in accordance with the sequence of passes making up
each programme; it is a device without moving parts that
switches from pass to pass. The maximum number of passes in
the programmes is 23, and so the distributor has 23 digits
(23 ferrite-transistor cells).

The programme unit consists of 23 ferrocart programme
cores, each of which has one primary winding connected to the
distributor and 40 secondary windings (one for each fixed pro-
gramme). The secondary windings of all the cores for a given
programme are all connected at one end to a common bus,
while the other ends go to the diode numerical matrices. Selec-
tion of the required programme is made by connecting one or
other of these secondary-winding bus-bars to the output bus
(+ on the diagram). Thus the operator needs only to press a
button on the control desk to select the required programme.

(3) Variable Programme Unit

A fundamental element of the VPU is its store ST, con-
sisting of a ferrite matrix on which 35 ten-digit numbers can be
recorded. Each core of the matrix has four windings: erase
(reset), carry-in of numbers, write (also serving as read-out
winding), and output (Figure 7). The carry-in and output
windings of the ferrites for the same digit are connected in
series (35 ferrites each); the write and read-out windings of all
the ferrites for a given number (pass) are also connected in
series (10 ferrites each).

The operation of the store is based on the well-known
Cambridge principle. But the design logic and circuit are
original and very simple.

For the recording of a number in the store, pulses are
applied to the input shaping circuits for the appropriate digits.
At the same time an activation pulse is applied to the distribu-
tor, 35 of whose cells have their outputs connected to the corre-
sponding write and read-out windings. Figure 8 shows. the form
of the pulses generated by the distributor and shaping circuits,
and also their relative timing. The sense of the current corre-
sponding to the top part of the pulses is for read-out. Hence,
as is clearly seen from Figure 8, the superposition of the two
magnetizations on the ferrite at the start only confirms the
absence of recording, while later on (when the bottom parts of
the pulses in Figure 8 coincide) a 1 is written.

When reading out numbers, an activation pulse is supphed
each time to the distributor, and the pulse coming from it
performs the read-out. So as to regenerate the read-out number,
feedback is taken from the output shaping circuit of each digit
to the input shaping circuit for the same digit, resulting in the
appearance of a pulse from the input shaper almost at the same
instant as a register pulse appears; but the relation of the
initial parts of these pulses is such that this attenuates the read-
out pulse only negligibly. A coincidence of the magnetizations
(the lower halves in Figure 8) brings about regeneration of the
number—its re-recording. By this means the recorded pro-

506/5

Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3




Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3

506 /6

gramme may be reproduced a practically unlimited number
of times.

As already pointed out, the recording of a rolling programme
carried out by an operator under manual control is achieved by
means of the reversible counter included in the system. There is
a special original device for the manual recording of programmes.
A number is dialled on a somewhat modified telephone dial,
taking its digits in sequence one after the other. To record the
number 253, for example, 2, 5 and 3 are dialled in sequence,
while to record 72 one dials 0, 7 and 2 in sequence, etc. The
dial has two contact systems: one for numerical pulses and one
for control pulses, which are fed out on separate channels. The
dial is designed so that when one dials zero only two control
pulses are generated (one each for clockwise and anticlockwise
rotation of the dial); when one dials 1 there is one control pulse,
one number pulse and then another control pulse, etc. The
control pulses thus generated serve to activate the six-digit dis-
tributor controlling the recording system. The outputs of its
cells control switches in such a way that the first switch (hun-
dreds) is open at the instant when the number pulses come
through for the first digit of the number to be recorded, the
second switch (tens) for the second-digit pulses, etc. These
pulses are passed from the switches to a binary counter that
serves to form the binary code for the number (Figure 9).

This device works on the principle of introducing pulses
into the digits of the binary counter in such a way that the
sum of their values equals the number of pulses received.
For example, since the number 100 has the form 1100100 in
binary code, for every pulse arriving from the first switch
(hundreds) one pulse is put into the third, sixth and seventh
digits of the binary counter; so as to avoid disruption of the
computation in the event of digits being carried from lower to
higher columns, these pulses are supplied not simultaneously to
all three of the digits mentioned, but spaced by a time delay
which is enough to allow the carry to take place.

After the dialling of the third figure is complete, the final
control pulse causes a pulse to be sent out from the output of
the sixth cell of the distributor, which in its turn brings about
the transfer into the store of the number formed in the counter,
followed by the preparation once more of the first cell of the
distributor. This makes it possible to dial numbers continuously
one after the other. The correctness of the dialling may be
checked on a visual indicator of dialled numbers, which uses
three dekatrons. The operator has the facility of erasing a
number when necessary by pressing a button (shifting the dis-
tributor backwards by one cell), and of then recording it again.

(4) Coefficient Selection Unit

Figure 10 shows the block diagram of this unit. As has
already been stated, the quantity y is chosen in accordance with
the value of A, while the whole range of variation of A is divided
into eight groups.

The unit contains three basic elements:

(1) Ferrite assembly (top line in Figure 10). These ferrite
cores serve for the estimation of the value of A, and are con-
nected into the lines for transferring A from the reversible
counter to the braking counter. There are eight of them alto-

~ gether, and on them are written the eight highest digits of A.

(2) Switch assembly (middle line in Figure 10). The switches
serve to control the lines for various values of y. Since, as was

pointed out, the execution for one group of A (from 0 to 16 mm)
is carried out from start to finish at creep speed, the. number of
switches is one less than the number of groups, i.e., seven.

(3) Transformer assembly (bottom line in Figure 10). The
transformers have ferrocart cores, and each serves for the
setting up of a certain value of y. For this purpose each core has
several primary windings, to which are connected the oltputs
of those digits of the frequency-divider that are required to
give the necessary value of y. The secondary (output) winding
of the core is connected to the input of the corresonding switch.

The estimation of the value of A is based on the following
principle:

Since what is written on the ferrite cores is not the value of
A itself but its complement A w.r.t. 1024, the following picture

is obtained for various groups of values of A:

() A < 16: 1’s are written in all the digits from the fifth
upwards; one or more of the cores for the first four digits
contains a 0.

(2) 16 < A < 32: 1I’s are written in all the digits from the
sixth upwards; the core for the fifth digit contains a 0.

(3) 32 < A < 64: 1’s are written in all the digits from the
seventh upwards: the core for the sixth digit contains a 0.

(4) 64 < A < 128: 1’s are written in all the digits from the
eighth upwards: the core for the seventh digit contains a 0.

(5) 128 < A: one of the digits from the eighth upwards
contains a 0.

Making use of the above, the device is designed in the
following manner.

Immediately after A has been recorded on the ferrite cores,
it is read out with polarity such that those cores containing 0’s
give pulses in their output windings. After amplification by
triodes, these pulses are passed to windings for opening switches
corresponding to these cores. So that several switches should
not open all at once, the opening winding for each is connected
in series with' the shut-off windings for all the switches corre-

‘sponding to cores of lower digits. Thus each time only one

switch opens, corresponding to the core of the highest digit in
which no 1 is written.

To consider the means by which certain of the above inter-
vals are split into two, the interval 32 < A < 64 is taken as an
example. This is split into the two parts (1) 32 < A < 48
and (2) 48 < A < 64. _

In addition to the conditions for this interval, an extra one
will exist for the first half—the presence of a 1 in the fifth digit:
while for the second half it will be the absence of a 1 in the
fifth digit. In order to control the satisfaction of these con-
ditions, an extra ferrite core is connected in the transfer line
for the fifth digit, and on read-out it gives a pulse in its output
winding when a 1 is present on it. This pulse is amplified by a
triode and closes a switch corresponding to the band 48< A <64,
and in spite of the fact that on all occasions when 32 < A <64
the switches for both parts of this interval receive opening
pulses, nevertheless for 32 < A" < 48 only the switch for this
band is open. For 48 < A < 64 the main ferrite core for the
fifth digit closes this switch, and only the switch for the band
48 < A < 64 remains open.

The other intervals are split up in 4 similar manner.

506/6

Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3




Declassified and Approved For Release 2012/12/14 - CIA-RDP80T00246A023500250001-3

(5) Start Pulse Advance System

As was observed earlier, the task of this system is to bgenerate

a pulse for starting the drive at a certain roughly constant time.

(about 0-5-0-6 sec) before the metal comes out of the rolls. This
calls for an estimate of the speed of motion of the mgot up to
-that instant.

For this purpose two photoelectric relays, are mounted on
either side of the rolls, at distances of 0:5 and 1 m from the
plane of the axes of the rolls. These relays control the mode of
operation of a ‘special reversible counter and a fixed-frequency
generator supplying pulses to this counter at frequency f.

Let ¢ be the time of advance, n; the number of pulses which
reach the counter from the instant of obscuration of the first
photocell until the ébscuration of the second, 7 the number of
pulses that should reach the counter from the instant of ob-
scuratlon of the second photocell until the generation of the
start pulse, and C the counter capacity.

Then, if for practical purposes the assumptlon that at the
end of its passage the velocity of the ingot is constant may be
taken as acceptable, one must have:

n=n—tf

The constant quantity ¢ - f'is first set into the counter, which

is put into the read-out mode. At the instant when the first.

photocell is obscured, a pulse switch is opened, and until the
instant of obscuration of the second photocell n; pulses enter
the counter. The follpwing quantity is got in the counter:

C+tf—ny
n MS T T2
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CS Nmi Nmax s
min ; © cs\_"min t
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Figure 1
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-From this instant the counter is switched into the addition

mode,-and when n = n; — ¢ - f pulses have entered it a pulse
appears from its last dlglt which is in fact used for starting
the drive.

6) Measurvir'zg Unit

As has been stated, this unit has two channels: interrogate
and execute. Position transmitters with oscillatory circuits are
used for both channels, and both are equipped with discs

having tooth-like perforations round their edges. The disc for

the execution channel is linked by a synchro transmission to the
screw-down imechanism, while the disc of the interrogate channel
is .continually Totated by a small motor. Pulses appear in the
channels when thé teeth of the discs enter the inductors of the
corresponding sensor circuits. The instant for starting the count

: of interrogation pulses is determined by a transmitter of the

same type, for which there is one special tooth on the periphery
of the disc. The instant for stopping the interrogation is de-
termined by a special electromagnetic transmitter, which gives
out a pulse when a magnetic circuit linked by its parts to both -
discs is completed. The measuring circuit is designed entirely
from elements without contacts. . :

’

Conclusion .

In conclusion it should be noted that the tests of the pro-
grammed-control system for -the screw-down mechanism have
given positive result§: the error in setting the upper roll did
not exceed 1-2 mm, while the time of operation of the screw-
down mechanism over the complete programme was less than
the time of operation under ‘manual control.

Figure 2 -
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Figiire 3
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Study of Industrial Production of Polyethylene
under High Pressures, and of the Automatic Control of the Process

B.V. VOLTER

The process of ethylene polymerization under high pressures

_represents one of the chemical engineering processes which is

most difficult to control. Its characteristic features are high
pressure, frequent explosions, considerable variations in the
output of the reactor and quality of the product. The ordinary
systems used for automatic stabilization of parameters do not
guarantee normal progress of the reaction for this process.
Therefore, a satisfactory solution of the problem of automatic
control of the process for industrial manufacture of polyethylene
can be solved only by the synthesis of a special system of control
on the basis of data of experimental and theoretical study of
the process. :

The investigation of the process and the study of the auto-
matic control systems were conducted on an experimental

industrial reactor, which consists of a tube (see Figure 4) S0 m -

long having an internal diameter of 16 mm, with an outer water
jacket for the initial heating of the reactive mixture and for the
removal of heat in the zone of reaction. Gaseous ethylene at a
pressure of 1,500 atm is continuously supplied to the reactor.

The process of polymerization takes place at a temperature of -

about 200° C. ’
The Static Characteristics of the Process

For the study of the static behaviour of the process the
method of non-linear multiple correlation was used!. The
relationship between the output of the reactor and the basic
parameters was represented in the form of a product of functions
of single parameters.

Q=11 (P) 12 (1) f3(07) 'f4(V_)

where f,(P) is the function of pressure, f5(f) the function of
temperature, f3(0,) the function of oxygen concentration, and
f4(V) the function of gas supply to the reactor.
Each one of- these functions was represented in the form
of a polynomial
fi(x)=a;+bx;+cx?

The results of periodic measurements of output and of other
parameters of the process were used as the initial data for the

“calculation. By the construction of the correlational fields and

by developing the regression curves for each parameter, the
coefficients of all functions f;(x;) were determined. The general
formula for the output of the reactor has the form

0=13x10"%(=21140-33P—1-16 x 10™* P?)
(t—112)(0,—55)(V +587)kg/h

Its verification on an industrial installation gave quite satis-
factory results.

The Stability of the Polyethylene Polymerization Reaction

The difficulty of controlling the process is aggravated by the
risk of a reaction taking place which would result in the decom-
position of ethylene into carbon, hydrogen and methane, which
develops very rapidly and is accompanied by the liberation of
large quantities of heat. When the signs of the risk of decom-
position appear it is necessary, almost instantly, to reduce the
pressure in the reactor or to diseharge the contents of the reactod
into the atmosphere. If the decomposition of ethylene cannot
be prevented then, instead of the expected valuable product,
soot is obtained. Each decomposition is followed by a prolonged
stoppage of production, which is needed to test the pressure
tightness of the equipment, for the removal of soot from the
inner surfaces of the reactor and for the carrying out of other
usual operations. All this causes great production losses.

The study of the causes of the ethylene decomposition
reaction and the development, on this basis, of methods and
means for its prevention represents an essential problem. By
using a special equipment it was possible to record several
interesting moments in the operation of the reactor, which
provide a possible explanation for one of the basic causes of the
decomposition. Recordings showed that very often the normal
progress of the process is disrupted by a sudden increase in
pressure, reduction in gas consumption and by an abrupt
increase in temperature. Such a sudden disruption of the
operating conditions may be explained by the formation of
polyethylene blockages in the reactor tube.

Rapid reduction of pressure in that case leads to the elimina-

tion of these blockages and to the slowing down in the reaction
development. If the pressure is not reduced in good time

. decomposition reaction unavoidably develops.

It was also possible to record the picture of the explosion
(Figure I). In the example given the operator was unable to
prevent the explosion by the reduction of pressure and, therefore,
the contents of the reactor were discharged into the atmosphere.
The decomposition of ethylene occurred in the reactor; as was
indicated by a black cloud of soot discharged from the reactor.
From che diagram it is also evident that there was an increase
in pressure and temperature which was accompanied by an
abrupt reduction in gas consumption.

For the elimination of the polyethylene blockages it was
proposed that at the very beginning of their formation forced
oscillations in pressure should be induced. An oscillator, specially
developed for this purpose, fully justified itself in operation.
Another means of preventing these blockages is to incerase the
gas supply to the reactor. )

The measures indicated did notlead to a complete elimination
of decompositions, although they became less frequent
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but all the same they took place. This circumstance points to
the instability of the polymerization reaction itself.

The first experiment for the investigation of the stability of
the polymerization reaction of ethylene under high pressure

was undertaken by Hoftyzer and Zwitering?. Having constructed

the material and thermal balance equations for an elementary
part of the reactor, the authors obtained two non-linear differen-
tial equations in a dimensionless form:

d _(1+u) .

o=ye” = V(3o—)) @
dx_l 3 - _ — A
Ve om0V W (x-x) ()

where y,, ¥ are the inlet and outlet cc}ncentrations of the initiator,
Xy, x the inlet and outlet temperatures, x,, the reactor wall tem-
perature, z the time, u the parameter, which determines the
activation energy, and v, w the constant coffiecients.

Using Liapunov’s method®, the stability of the state of
equilibrium was investigated by the linear equations of first
approximation:

dx . .
—d?=a,1X+a,2Y 3)
dY .
E=a21X+a22Y, 4

According to Liapunov’s method, the stability of the equilibrium
state x,, y, of a non-linear system of the second order is deter-
mined by the following Routh-Hurwitz conditions:

dr=ay105,—0a1,08,1;>0 ()
d;:—a“—a22>0 (6)

By equating the left sides of these inequalities to zero, the
authors determined the boundaries of the region of the stable
equilibrium states for an area of parameters xg, y, for the differ-
ent values of x;. They arrived at two interesting results: (1) the
system can have five states of equilibrium; and (2) the industrial
reactors are operated in a region where condition (5) is satisfied,
but where condition (6) is not satisfied.

The investigation of eqns-(1) and (2) terminates at this point,
and Routh and Hurwitz proceed to the study of the system of
control. However, in the author’s opinion the study of the
reactor itself was left unfinished.

First of all, the question arises: is the region of unstable
states of equilibrium the region of decompositions? The in-
stability of the state of equilibrium may lead either to a rapid
increase in temperature or to stable temperature oscillations.
From the theory of oscillations® it is Known that in non-linear
systems self-oscillations are possible—stable periodic oscillations
which in the absence of external disturbances are periodic in

character. The phase picture of self-oscillating systems contains

at least one isolated closed trajectory—the limiting cycle. If the
limiting cycle is stable, then the state of equilibrium embraced
by this cycle will be unstable. It follows from this that the prob-
lem of stability of the polymerization reaction of ethylene is
closely associated with the problem of self-oscillations. However,
before undertaking any theoretical investigation of self-oscil-
lations, it is necessary to be convinced about the practical ex-

pediency of this. In other words it is necessary to possess the
experimental material which would confirm the possibility of
self-oscillations in an actual process of ethylene polymerization.

Self-oscillations of the Ethylene Polymerization Reaction

The possibility of the occurrence of periodic oscillations in
chemical systems has been known for a long time. Andronov*
indicated that under certain conditions in chemical systems,
just as in other (mechanical, electrical, etc.) systems, continuous
oscillations, inexplicable in principle by the linear theory
may occur. Recently, a large number  of works devoted to
the experimental and theoretical study of the periodic chemical
reactions, were published. A detailed outline of these investiga-
tions is given in the work of Salnikov®. ,

" The observations made on the process of ethylene poly
merization in a tube reactor shows that the process takes place
under the conditions of abrupt oscillations in temperature, re-
actor output and quality of the product.

In the manual control of the process it was possible to ex-
plain these oscillations by the instability of pressure and oxygen
content in the mixture, by the change in the gas supply and by
other causes, i.e., it was possible to consider that these changes .
in the process represent imposed changes. For us it was quite

“unexpected to find that the automatic stabilization of basic dis-

turbances had very little effect on the progress of the process.
The oscillations in temperature, output and quality, as before,
remained considerable. This very fact suggested that the process
has its own inherent internal rhythm, determinable only by the
properties of the system, and not by the external disturbances,
i.e., that self-oscillations are characteristic of the process.

In Figure 2 are given the diagrams of recordings of pressure
and temperature along the length of the reactor, from which it
is seen that the temperature oscillates constantly, under which
conditions the period and the amplitude of these oscillations
change along the length of the reactor. (The term ‘amplitude’ is
used conditionally, since the oscillations are not harmonic.) The
increase in the period of oscillations at the end of the reactor is
clearly seen. At point No. 13 the period amounts approximately
to 15 min, at the fourteenth point it is already 20-25 min, and at
the last point it exceeds half an hour. The amplitude of tempera-
ture oscillations along the length of the reactor also increases
continuously, and at the last point it reaches 30-40°C. The ex-
periments were carried out in the presence of forced pressure
oscillations having an amplitude of 70 atm and a period of
2:5 min. These oscillations are recorded on the pressure dia-
gram. The period of these oscillations is 10 times less than that
of the natural temperature oscillations. The pressure oscillations
are reflected in the temperature, although not very appreciably.
They are, for instance, superimposed on temperature oscillations
and do not alter the general picture at all.

It is possible to note yet another peculiarity in the behaviour
of the process: the temperature oscillations at the first points
akong the gas flow are not reflected at all in the oscillations at
subsequent points. This is as if each part of the reactor represent-
ed an isolated oscillating system having its own period and
amplitude. This, at first glance, contradicts common sense,
since the gas moves through the reactor ‘at a high velocity,
and it would be more natural to expect an interdependence in
the behaviour of temperatues in neighbouring points.

It will be assumed now that the temperature oscillations are
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conditioned by external disturbances. Then, however, a large
number of inexplicable questions is raised. First of all, what
force should these disturbances have if pressure oscillations
of 70 atm are hardly reflected in the temperature? Why do
these external forces cause temperature oscillations, having
"quite different periods, along the length of the reactor? Why
are these disturbances more pronounced at the end of the
reactor than at the beginning? Finally, why, in general, should
these external disturbances cause almost periodic temperature
oscillations ? All these questions, in our opinion, are inexplicable
when taking into account only the external disturbances. There-
fore, the deduction that temperature oscillations are explained
by the internal oscillational nature of the process, i.e. by the
self-oscillations of the reaction, is more convincing.

The explanation of all peculiarities in temperature be-
haviour in the reactor requires a detailed study of the mechanism
of the reaction. In this paper only hypothetical reasons concern-
ing some questions are given.

The period of -temperature oscillations may increase as a
result of a decrease in the concentration of the initiator at the
end of the reactor. An increase in the amplitude of oscillations
is probably determined by an increase in the viscosity of the
mixture as a result of polymer formation. It is known that an
increase in the viscosity of the reactive mixture usually tends to
inhibit the chain break-up reaction, but that it has no effect on
the chain growth. Therefore, at the end of the reactor longer
polymer chains should be formed, and since liberation of heat
is determined by the chain-growth reaction, then this also leads
to an increase in the amplitude of temperature oscillations at
the end of the reactor.

The fact that the temperature oscillations at the neighbouring
points are not correlated among themselves can be explained by
the action of the reactor wall. It is generally known that the wall,
in some reactions, plays a big role. Very often the break in the
chain reaction occurs on the wall, and in other reactions the
wall also participates in the initiation of the chain. Semenov®,
for example, points out that the molecule of oxygen on the
reactor surface can enter into the reaction V + O, — VOO, as
a result of which a powerful peroxide radical VOO is formed on
the surface. The latter reacts readily in the presence of hydrogen
with the initial substance, for example RH, giving a surface
peroxide compound VOOH and radical R. For such reactions,
the liberation of heat not in space but on the wall, is character-
istic; and if the reaction is irreversible, then in the course of the
process the wall is covered by a chemisorptive layer and its
initiating action ceases. ]

If a similar picture could be built up for the ethylene poly-
merization reaction (which of course requires a special proof),
then it is possible to visualize that the mechanism of self-oscilla-
tions of the reaction will be as described. The progress of the
reaction leads to an increase in temperature, but the coating of
the wall by the chemisorptive layer of polyethylene molecules
leads to the damping of the reaction and to a reduction in tempe-
rature. Gradually with the gas flow the polymer is washed off
the walls, the reaction develops again, the temperature increases,
and so on. Naturally, because of such a mechanism the reactor
will consist of a large number of self-oscillating systems, dis-

By denoting that
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It is possible to put forward a number of other self-oscillating
models of the process. In view of the strongly pronounced
exothermic nature of the process it is most likely that the self-
oscillations are thermo-kinetic in character, in which case the
interaction between the heat removal system and the reaction
leads to stable temperature oscillations. Similar oscillations
were studied for the first time by Frank-Kamentskii’.

Study of the Thermo-kinetic Model of Reaction

The rate-of-reaction equation for the polymerization of
ethylene may be represented in the form:

E
— d_M= A e_ﬁ I% M
dt :

where M is the concentration of monomer, I the concentration
of initiator, E the activation energy, R the gas constant, T the
temperature, A the pre-exponential multiple, and ¢ the time.

On the basis of the rate-of-reaction equation it is possible to
construct for an elementary section of the reactor the material
and thermal balance equations.

_E '
%:-Ae RTI*M+£V(M0—M) @)

_E '
Cp%tZ=VQAe RT ¥ M —~Sh(T—T)+GpC (T,—T) (8)

here G is the gas supply, V, S the volume and surface of the re-
actor section under consideration, M the monomer concentra-
tion in the initial mixture, Q the thermal (calorific) effect of the
reaction, C the specific heat of the mixture, 4 the heat-transfer
coefficient, p the density of the mixture, and T,, T, the temper-

ature of the mixture and temperature of the reactor walls.
rd

4G _Sh+GpC _ _S,T,+GpCT,

Vv’ V2% Sh+GpC

the system may be reduced to the following form

_E
%_tf‘iz_Ae REEM+o(Mo—M)  (Ta)
T -E

Cp-gy=0e FIM—a(T~Ty) (8a)

If it is assumed that the concentration of the initiator
is constant and if dimensionless variables x = QR/Cp E,
y = RIE)T, v = A I* ¢t are introduced, then the material and.
thermal balance equations will be

d -1

d—f= —xe P+ B(xg—x) (7b)
d -1

d—’:=xe Y—y(y—yo)

(8b)

tributed along the length of the reactor. Under these conditions where:

the temperatures at the neighbouring points will not be mutually B= L y= x

interconnected. ’ Al* CpAI*
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1t should be pointed out that in the elementary section of the
reactor the change in the concentration of the monomer will be
insignificant ; since total conversion is small, there is a continuous
supply of fresh gas and the system is under a constant pressure.
On this basis one can assume that the second term of the right-
hand side of eqn (7b) is constant

B(xo—x)=m ©)
Then, eqn (7b) assumes the form:
' 1
%%=—xe y+m (7¢)

“Now, the models of our chemical system will be represented
by eqns (7¢) and (8b). Analogous equations were obtained by
Salnikov* in the investigation of the thermo-kinetic oscillations
of chemical reaction 4 — X — B for the case of the rate of
reaction 4 — X remaining constant.

In order to develop stable periodic solutions (self-oscilla-
tions) in the system (7¢), (8b) the methods of the qualitative

“theory of differential equations were used. The study of the non-
linear systems of the second order is most expediently carried
out by means of a phase plane. The presence of the system of a
limiting cycle on the phase plane represents the necessary con-
dition for self-oscillations. In the case here the plane having
parameters x and y (concentration of monomer and tempera-
ture) is the phase plane. The general procedure of the study is as
follows. The states of equilibrium are determined, and the
‘boundary of the region of stable equilibrium states is developed,
by means of the equation of the first approximation. After this,
using Poincaré’s sphere®, the stability of particular points of
the system, in the infinitely remote parts of the phase plane, is
determined. If the system has an unstable state of equilibrium
and if the infinity is also unstable, then on the basis of Bendixon’s
theorem?, it will be possible to arrive at the conclusion that on
the phase plane of the system there is bound to be at least
one limiting cycle.

By equating the right sides of the eqns (7¢) and (8b) to zero

-1
—xe *+m=P(x,y)=0
1

xe T—y(y=yo)=0(x,y)=0

it is possible to find the equilibrium state coordinates

x=n+% (10)

x,=me L (11)

p Yoy+m
For the determination of the stability of the equilibrium state
we shall introduce new dependent variables
x=x+&, y=y;+1n

and we shall reduce the system (7¢), (8 b) to two linear equations
of the first approximation

dg _

e 5+b71,d =ce+dn

¢

The coefficients of these equations are determined by the follow-
ing expressions

a=pe(Xs y5), b=p, (x;, ;)
c=01 (x5, ¥5), d=Qy" (x5, y,)

The necessary and sufficiently conditions of stability of the linear

system of the second order are the following equations

o=—a—d>0 (12)
ab
A= — >0 (13)

The boundafy of the stability region ¢ = 0 is determined on the
plane m, y, by the following equations:

2L
m=yf(y+e Vs (14

: 1
yo=ys[1—ys(1+e yys):l

The verification of the second condition of stability shows that
at any parameters of the system 4 > 0. From this 1t follows
that the equilibrium state is a node or a focus.

For the study of the behaviour of phase trajectories in the
infinitely remote parts of the plane G, determinable by the in-
equalities x = 0/m, y = ¢, when ¢ has the smallest desirable
positive value, Poincaré’s sphere is used. For this, new variables

(15)

where

Q(—g—,%>=§e —v<—1——yo>

Since the identity P = pQ does not occur, the equator of
Poincaré’s sphere (z = 0) is an integral curve. The particular
points on the equator are detérmined by the relations z =0
and P/Q —p =0. On the equator of the sphere two pairs of
particular points p; = 0 and p, = 1 + y are located.

The subsequent analysis shows that the phase trajectories
do not come out of the region G, and on the contour which
limits the region, there are no stable states of equilibrium.
Therefore, on the basis of Bendixon’s theorem? it is possible to
prove that on the phase plane there is a limiting cycle, which
embraces the unstable state of equilibrium.

Thus, the region of unstable states of equ111br1um deter-
minable by eqns (14) and (15), is thé region of self-oscﬂlatmg
conditions of the system.
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It should be pointed out that if a simplified condition (9) is
not adopted, then the study of eqns (7b), (8b) is made difficult
by the determination of the state of equilibrium. But the simula-
tion of this system on an analogue computer has shown that in
it also, under certain conditions, self-oscillations occur. One of
the limiting cycles, obtained on the computer is represented
in Figure 3.

In the author’s opinion, the self-oscillations of the ethylene
polymerization reaction are the main cause of considerable
changes in the output of the reactor and quality of the product.
Therefore, they should be considered harmful, and it is necessary
to search form eans and methods to combat them. This problem
is still unsolved.

Automatic Control of the Process

The investigations on the reactor were carried out simul-
taneously with the automization of the process. The results of
investigations were used in solving the problems of automatic
control, and the introduction of automatic control has helped
the experimental work. Thus, a system of automatic control,
the block-diagram of which is shown in Figure 4, was cons-
tructed. From this diagram it is possible to see which basic
functions are performed by this system. '

A conventiooal isochromie controller carries out different
commands according to pressure changes in the reactor, which
are received from other points of the circuit. The controller,
in facth, acts as a servo system. After receiving a signal from
the pressure-correcting unit, the pressure is gradually reduced if
the temperature at any one point of the reactor exceeds the
set limit. For the set point of the pressure controller, a signal
is also received from the oscillator, which operates on the prin-
ciple of conventional relay pulse-couple. The oscillator rapidly
reduces the pressure in the reactor by 70-100 atm and then
gradually raises it to the previous value.

With the appearance of any risk of explosion the safety
interlock comes into operation. At first, the pressure in the
reactor is reduced, but if this does not result in the prevention
of an explosion the contents of the reactor are discharged into
the atmosphere. At the same time a signal is sent for the
stoppage, of the compressor, and the supply of oxygen is dis-
continued. )

The starting of the reactor is obtained through the command
of the operator. The basic operation of starting consists in a
gradual increase of pressure in the reactor. If, at the time of
starting dangerous operating conditions develop, then the rise
in pressure is stopped either automatically or by the command
of the operator.

The unloading from the separator takes place periodically
through the pressure signal in it. As soon as the pressure in the
separator begins to fall, the unloading is stopped, since the re-
duction in pressure indicates that the separator is completely
freed from the liquid polymer. The interval of time between the
unloadings is adjusted automatically by a special system, which
indirectly measures the output of the reactor and decreases or
increases the frequency of unloading. The pressure-control unit
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in the separator performs simple stabilization of pressure during
the intervals between the unloadings. It should be pointed out
that the pressure control system in the reactor and that in the
separator do not interact.

The unit for the measurement of oxygen provides for the
remote automatic (or hand) change in the supply of initiator to
the reactor for any programme.

Constructionally, the automatic control system consists of
pneumatic control equipment which is designed for the simul-
taneous automatic control of two reactors. All units of the as-
sembly consist entirely of pneumatic logical components. This
provides for adequate reliability and fire risk. A number of*
such units have been produced and have passed industrial
tests at two of the works. Their testing under operating con-
ditions proved their complete reliability and high quality of
control.

The proposed system is a natural outcome of only the first
stage of work for the automatic control of the process. It
embodies the operations which are essential for the maintenance
of trouble-free normal operating conditions of the reactor.
However the problem of automatic control of the polymerization
reaction is not yet completely solved. It may be expected that
further study of the process, and particularly of the self-oscil=
lating conditions, will result in the finding of even more efficient
methods for the control of the reaction.

Coriclusions

As a result of this study a relationship was found between
the output of the reactor and the basic parameters of the process.
One of the basic causes of the ethylene decomposition was
revealed. The self-oscillating conditions in the operation of the
reactor were uncovered and the mathemat1cal model of a part -
of the reactor was studied.

Simultaneously with the investigation of the process, work
was carried out for its automatic control as a result of which
pneumatic automatic control equipment was constructed
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A Study of the Dynamic and Static Characteristics of the
Process of Fractional Distillation
LV. ANISIMOV

Introduction

Numerous studies of the dynamics of the process of fractional
distillation are based on the consideration of the theoretical and
not the actual column plates. For the binary systems the degree
of utilization of plates is taken into account but it is assumed
that this is independent of the parameters of the process%-17,18,
Such a simplified approach introduces substantial errors into
the calculations relating to the dynamics and statics of the
distillation process.

As a result of studies of the process of fractional distillation
for the binary mixtures!s 3 & 9. 11,12 jt was possible to determine
the effect of design parameters of the plate, physical and chemical
properties of the components and operating parameters of the
process on the mass-transfer kinetics. In this work the problems
connected with the calculations and analysis of the dynamics
and statics of the process for the separation of binary mixtures
in the distillation columns are considered in the light of the most
recent studies of the mass transfer on the plate, and recommenda-
tions are given for the choice of the optimum system of control
of the process.

Stuily of the Dynamic Characteristics of the Process and Special
Characteristics which Affect the Chaice of the System of Control

A mathematical account of the process was obtained by
proceeding from the material balance of the more volatile
component of the binary mixture in the distillation column and
the following assumptions were made:

(1) The working of the column is adiabatic.

(2) The liquid is not carried away from the plate.

(3) The mixing within the liquid on the plate and in the
vapour is complete. «

(4) The quantity of the vapour phase in the column is
disregarded.

(5) The pressure on all the plates is cqual to that of the
atmosphere.

(6) The condenser of the column is full.

(7) All the liquid on the plates is confined to the zone of
mass transfer.

(8) The initial mixture and the reflux admitted are at boiling
point..

(9) The mass transfer on the column plates is equimolar.

(10) The local mass transfer coefficient at a given instant of
time is uniform over the entire plate.

The material balance equations for the more volatile com-
ponent in the transient process are:

For the top plate

dx,

Hn"d—_LDXD LX Va1 V1= Vada 6]
For the feed plate
HdeXl-—LfﬂXfH—Lfo-ka_lyf 1— ll/fyf+FXF 2)
For the column still
Ho S0 L X, ~ Voyo - WX,y ()

It is assumed that in the still a single complete evaporation
of the liquid portion takes place, under which conditions

vo= Xo | 4

In accordance with the assumptions made, the liquid and
vapour flow rates are connected by the following equations:

Vo=L,—W=V,=...=V, (5)
Ly=V,~D=L,=..=L,,, (6)
Ly=L;¢,+F=L; ;=..=L, )

The formulae, which allow for the hydraulic retardations
of the flow, the non-adiabatic character of the process, etc., to
be taken into account, are given in another work?2.

For the solution of eqns (1)-(3) it is necessary to determine
the relation between the variables.

The assumption about complete mixing of the liquid on the
plates makes it possible for the process of mass transfer, which
takes place during the motion of a certain volume of the vapour
phase through a liquid layer of constant composmon to be
considered!?,

The mass-transfer equation for the ith plate may be written
in the following form:

Vi-1dy=K,S;(y; —y;)dr (8
Assuming that the quantities V;_,, K, and S; are constant

one obtains
_ _Kui Kvi

vi=yioe iy (=g vin) ©)
where

KuiszSiATi (10)

508/1

Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3




Declassified and Approved For Release 2012/12/14 CIA-RDP80T00246A023500250001-3

508 /2

The general mass transfer coefficient on the plafe K,
determinable by plate design, physical and chemical properties
of the components and by operating parameters, makes it
possible for the effect of these factors on the transient process
to be taken into account in the calculations.

According to the double resistance theory!s, the general
mass transfer coefficient is a function of the particular mass
transfer coefficients of the liquid and vapour phases:

1
T 1 (1)

ﬁ—v_l-*-kiﬁ

_(o”
i _<a—>i

the phase equilibrium constant.

The particular mass transfer coefficients may be calculated
on the basis of experimental data as definite functions of the
plate design parameters, physical and chemical properties of
the components, composition of the liquid and vapour phases
on the plate and of vapour or liquid flow rates in the column?®,

The system of eqns (1)-(11) describes the transient process
in the fractional distillation column for the separation of binary
mixtures, taking into account the kinetics of mass transfer on
the plates.

As an example, the calculation and the analysns of the tran-
sient processes for the separation of the methanol-water mixture
in a distillation column are given. The initial data are as follows:
the pressure in the column is atmospheric; the number of plates
n = 18; the feed plate number f = 9; the quantity of still product
W = 166'5 kg-mole/h; the quantity of initial mixture F =
2292 kg-mole/h; the quantity of distillate D = 62+7 kg-mole/h;
the quantity of vapour ¥V, = 1411 kg-mole/h; the concentra-
tion of the more volatile component in the feed Xp = 0-273
mole fractions; the concentration of the more volatile compo-
nent in the distillate X;4 = 0-973 mole fractions; the concentra-
tion of the more volatile component in the still X, = 0-0085
mole fractions.

Kui=

where

B,;=1-61V,_ 46 kg-mole/h/plate surface.
B;=380kg-mole/h/plate surface.

The calculations for the transient processes in the column
were carried out on a universal digital computer for the following
step-like unit disturbances:

(1) For an increase in the concentration of the more volatile
component of the initial mixture

5
(2) For an increase in the quantity of feed
5
A4
F=Fx— 100
(3) For an increase in the distillate withdrawal
5
AD == D X 1—06

(4) For -an increase in the quantlty of vapour leaving the
evaporator

5

AV0=V0XI®

The calculation results are given in the form of response
curves in Figures 1-4. The curves obtained by calculations based
on theoretical plates are shown by dots. . The comparison of
curves shows that the results of calculations based on the theo-
retical plates and those based on the proposed method are sub-
stantially different, especially for the plates of the low separating
capacity.

By comparing the response curves it is possible to record
the following basic dynamic characteristics of the fractional
distillation process, which affect the choice of the control
system:

(1) The greatest effect on the transient processes and on the

- concentration distribution along the column height in the state

of equilibrium is shown by disturbances which violate the con-
ditions of the material balance in the column, especially by those
connected with a change in the distillate withdrawal.

(2) The transient processes in the column take place slowly;
in the example considered they require from 1:7 to 2:5h. The
response time of the column depends on the number of plates,
relative volatility of the components and other factors®.

(3) The changes in the concentration of the liquid on the
upper and lower plates of the column are insignificant. The
greatest changes in the concentration of the liquid take place
in the so-called ‘controlling’ plates which are situated approxi-
mately in the middle of the evaporating and restorative sections
of the column. The position of the ‘controlling’ plates may be
considered independent of the form of disturbances.

The input selection for the control of composition or tem-
perature of the liquid should be made from one of the controlling
plates. On no account is it possible to control the process
dlrectly through the composition of distillate or still product,
since the static and dynamic characteristics of the process would

‘deteriorate rapidly.

(4) The change in the steam supplied to the evaporator gives
rise to transient processes in the draining and restorative sections
of the column, which are different in character. This is attributed
to the action of two opposing factors: to an increase in the
separating capacity of the column with the increase in the reflux
number, and to a decrease in the-efficiency of each plate with an
increase in the vapour flow rate. At the very beginning the
changes in concentration for the restorative and draining sec-
tions of the column have different signs.

(5) In a transient process considerable delays in the change
of composition (of temperature) of the liquid phase occur. The
delays in the change of composition of the vapour phase on the -
plates caused by the change in the vapour flow rate in the-
column are considerably smaller. This is explained by the fact
that the value ¥V of the vapour flow changes with a speed which
is close to that of sound; therefore, the conditions of mass
transfer on the plates change almost instantaneously, see eqn(9).
This phenomenon finds no explanation in calculations based
on the theoretical plates. )

In the overwhelming majority of cases the control circuits
for the process of fractional distillation are limited to the prob-
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lem of stabilization of the parameters of the process. Such

automatic control systems work more or less ‘satisfactorily
if the disturbances are small and if variations in the quality
of the product are permissible. With appreciable changes in the
quality and composition of the initial mixture the continuous
deviations from the assigned composition of distillate and still
product are unavoidable. In order to obtain products of high
purity under these conditions the invariance of the process
control systems is the most desirable.

A system of control cannot be made absolutely invariant in
respect of all the disturbances. In the fractional distillation pro-

cess the violations of the material balance caused by changes in

the quality and composition of the initial mixture represent the
basic disturbances. The violations of the thermal balance of the
process, the changes in pressure in the column, the variations
in the quantity of liquid on the plates and in the still, the changes
in the working efficiency of the plates caused by change in the
composition of the feed and in the vapour flow rate in the
column, etc. represent the less important and secondary dis-
turbances.

It is possible and expedient to construct a selective invariant
system of control, for which the basic parameter of the pro-

cess—the composition of the liquid on the control plate—will °

be independent of the changes in the quantity and composition
of the initial mixture.

With a selective invariant system of control only small
changes in the composition of the liquid on the control plate
under the action of the less important secondary disturbances
of the process will occur. Therefore, the system of control
should be based on the combination of principles of control
according to disturbance and deviation of parameter.

An account of the fundamentals of the theory of combined
control and of the condltlon of invariance are given in other
workst?.

The amplitude and phase characteristics of the controlled
plant according to control and disturbance paths required for the
calculation of the conditions of invariance, are not difficult to
determine from the response curves obtained as a result of the
solution of the system of equations for the dynarmcs of the
process.

The changes in the quantity and composition of the initial
mixture violate simultaneously the material and the thermal
balance of the process. The system of control, which reacts to
these disturbances, compensates for their effect in the column
by the corresponding change in the supply of the reflux and
heating vapour. The oscillations in the pressure of the heating
vapour and reflux and the inaccurate readjustment of the control

elements represent the secondary disturbances, the effect of.

which may be easily eliminated by applying flow ratio con-
trollers, which measure the magnitude of disturbance and of
response change in the supply of the controlling means.

The selective invariant system of control does not embrace
the controllable parameters, which have a smaller effect on the
dynamic and static characteristics of the process. These para-
meters are stabilized by customary controllers.

'On the basis of what has been stated, a block diagram for a
combined selective invariant system of control for the process
of fractional distillation (described at the end of this paper—
see Figure 7), has been developed.

508 /3

The Static Characteristics of the Process

The task of automatic control consists in the determination
and maintenance of the optimum values of the controlling para-
meters of the process.

The calculated values of the following parameters of the
fractional distillation process are considered to remain approxi-
mately unaltered under operating conditions: the pressure in
the column, the level of the liquid in the still of the column, the
level of reflux, and the temperature of the initial mixture and
reflux. The control of these does not present any difficulties and
is not shown in the diagram of Figure 7.

The optimum values for the reflux number, the quantity of
the heating vapour and the location of feed plate change under
operating conditions. In the separation of multi-component
mixtures it is necessary to determine also the optimum quantities
and points of withdrawal for the intermediate products.

The optimum values of these parameters based on the mini-
mum cost of manufacture are determined as the functions of the
quantity and composition of the initial mixture, provided that
the product obtained is of precisely the composition assigned or
that it changes within the permissible limits.

For the calculations relating to the statics of the fractional
distillation process, the material balance equation for the state
established in the part of the column situated below the i~/th
plate is written

Livi Xip1 = Viyi+ FXp—WX,=0 12) .
where

Liy=V+Wwheni<fandL;,,=V,+ W—Fwheni>f (13)
Vi=V when 0<i<W (14

Consequently, the material balance of the process for the
established state may be written in the form:

X.=

i_V+W(Vyi—1+WXO) when 0<i< f (15)

X.

1 .
l=V+—W:‘F(Vy,_1+WXO—FXF) when f<l£n+1

(16)

The statics of the fractional distillation process is described by
the system of eqns (4), (8)-(11), (15) and (16). Its solution makes
it possible to obtain the static relations between the basic para-
meters of the process and the concentration distribution of the
more volatile component in the liquid on the plates for different
operating conditions.

The calculation of the static characteristics of the process
was made for the above-mentioned fractional distillation column
for the separation of the methanol-water mixture, for the differ- -
ent quantities and compositions of the initial mixture, and for
the constant composition of distillate and still product. As an
example, in Figures 5 and 6 the static characteristics of the
column are given. From Figure 5 it is evident that within a
certain range of values for the concentrations Xz and loads Gg
there exists an extremum relationship for the steam consumption Q
per unit weight of distillate Gp. With the increase in Gr the heat
consumption per unit of Gp also increases, especially at high
concentrations Xp. From the graph it is possible to determine
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the operating conditions for which the energy requirements will
be within the limits which are economically expedient.

From the consideration of Figure 6 it follows that the static
characteristics have an extremum and ambiguous values (the
assigned compositions of the final products may be obtained
under different operating conditions). Curves I and 1T, which
limit the operating region for the parameters of the process,
represent the locus of values of the coordinates ¥ and D, at
which the compositions of the final products are exactly equal
to those assigned. The minimum energy requirements of the
process correspond to the minimum value for the vapour flow V'
which, at the given values of D, F and XF will secure the assigned
compositions Xp and Xw. One of the tasks of the optimum
control is the determination and the maintenance, in relation
to the values of F and Xr, of the values ¥ and D, which corre-
spond to the coordinates of points situated on the left side of
the static characteristics. ’

For each set of operating conditions there is a limiting load

for the column in respect of the quantity of the initial mixture
" of a given composition, at which the operating region degener-
ates into a point, see the extremum on curve . With a further
increase in the quantity of the initial mixture it is impossible to
obtain the assigned compositions for the final products.

A reduction in load decreases the necessary vapour flow,
which leads to an increase in the enrichment of the vapour
phase by the more volatile component, and to an increase in
the efficiency of mass transfer, see eqn (9).

The optimum place for the introduction of the initial mix-
ture into the column is determined for each set of operating
conditions, proceeding from the fact that the concentration of
the more volatile component in the initial mixture Xp should

be equal to the concentration X; on the feed plate, i.e., the

following condition is observed:

X 1 <Xp<Xy-y (17

As a result of the analysis of calculations relating to the
statics of the process it is possible to make the following de-
ductions:

(1) The plate-type distillation column for the separation of
binary mixtures is a non-linear system. The independent para-
meters in the calculations relating to the statics of the process
are the load of the column based on the quantity of the initial
mixture F, the composition of the initial mixture Xr, the value
of the vapour flow rate in the column ¥ and the distillate with-
drawal rate D.

(2) The region of the static characteristics in which the con-
ditional products may be obtained is limited by the four in-
dependent parameters indicated. These limitations are con-
ditioned by the kinetics of mass transfer. The assignment of
values for X p and Xy, which fall outside the region of their joint
existence, may cause oscillating operating conditions in the
column (the conditions of joint existence of values for Xp Xw
are realized periodically).

(3) The relation betwcen the final products of the column
and the vapour flow rate may have an extremum. An inc.case in
the vapour flow rate increascs the motive force of the process
Y% — Y,, but reduces the efficiency of each plate, which gives
rise to the extremum. This phenomenon is not found in the
calculations based on theoretical plates. The extremum for the

static characteristics may be conditioned by the kinetics of mass
transfer, as well as by the carrying away of the liquid from the
plates.

(4) The static characteristics are ambiguous. This property

. develops only in calculations which take into account the kin-

etics of mass transfer on the plates. The range of characteristics,
situated on the left side of the extremum, represents the operating
range. )

(5) The change in composition of the vapour phase on the

. plates is usually more appreciable than that for the liquid phase.

(6) The optimization of the process produces increased de-
mands on the system of automatic control, in view of the steep-
ness and ambiguity of the static characteristics.

As a result of the investigations described it was possible to
develop a control system for the distillation process, which is
shown in Figure 7. Controller 1 maintains the assigned optimum
rate of supply of the initial mixture to the column.

Instruments 4 and 5 measure the rate of flow of the initial
mixture and send signals to controllers 2 and 3 for the flow
ratios Gp/GR and Gr/Q.

The dynamic characteristics of instruments 4 and 5 are com-
puted so that the conditions of selective invariance in respect of
disturbances for the rate of flow of the initial mixture are ful-
filled. Controllers 2 and 3 maintain the material and thermal
balance of the process. ’

The control based on the disturbance of composition of the
initial mixture and on the deviation of the composition of the
liquid on the controlling plate is achieved by these same con-
trollers through the assignments computed and set by computer
10 (universal digital computer).

Converters 7 and 8 receive signals from transducers 6, 9

and 11 which measure the compositions X# and X; and the rate
of flow G, and transform them into signals which in turn are
admitted to computer 10.,

The computer performs the following operations:

(1) Calculation of the optimum load of the column G for
the current values of Xr and setting of the assignment for the
rate of flow controller 1, see Figure 5.

(2) Calculation of optimum ratios Gr/Gg and Gp/Q in re-
lation to the current values of Gr and Xr and setting of the
assignment for controllers 2 and 3, conforming to the conditions
of selective invariance.

(3) Correction of the calculated optimum ratios Gr/GRr and
Gr/Q based on the degree of deviation of the basic controllable
parameter—the deviation of concentration of the more volatile
component in the liquid on the selected plate (closing of the
control loop by means of the feed-back signal).

(4) Calculation of the optimum feedplate number and shift-
ing of the inlet of the initial mixture to the necessary plate.

(5) In the case of muiti-component mixtures: calculation of
the plate number for the withdrawal of the side product and
calculation of its quantity. The corresponding assigned opera-
tions: the changing over to the necessary withdrawal plate and
sctting of the assignment for the controller of the side product
flow rate are not shown in the diagram.

(6) Transition from one algorithm of control to another—in
accordance with the change in the optimization assignment, with
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the transition (having reached definite parameters values) from
starting to normal operating conditions and from the latter to
the shut-down, etc.

In addition to this the usual operations of automatically
checking the accuracy of calculations and the working order of
the computer, the printing of results, signalling of inaccuracy
and faults, etc. should be performed. In case of faults or
stoppage of the computer, the assignments to controllers should
remain at values determined at the preceding instant.

In the development of the considered control circuit it was
assumed that the temperature of the initial mixture is constant.

It is known that the heating of the mixture to its boiling point -

represents the optimum condition. With the variable composi-
tion and constant temperature of the initial mixture the ratio
between the liquid and the vapour phase, and the enthalpy will
change. Therefore, in the case of the composition of the initial
mixture changing within wide limits, it is expedient to control its
enthalpy. For this, an instrument should be included in the
control circuit which would measure the enthalpy of the initial
mixture and send the signal to the computer. The computer
should calculate the optimum enthalpy value for the parameters
of the initial mixture at the corresponding instant of time and
pass the assignment to the steam consumption controller, which
in turn should transmit it to the heat exchanger for feed heating.

The adaptation of the proposed control system is expedient -

in those complex cases where it is required that the separation
of components of the mixture should be made with a high ac-
curacy and where optimization of the process is required.

Nomenclature

Quantity of distillate (Kg-mole/h)

Quantity of still product (kg-mole/h)

Quantity of initial mixture (kg-mole/h)

Plate number, for still / = 0, for condenser i = n -- 1

Feed plate number

Quantity of liquid on the plate (kg-mole)

Quantity of liquid running off the plate (kg-mole/h)

Quantity of vapour leaving the plate (kg-mole/h)

Quantity of heat supplied to the evaporator (kcal/h)

77> Do R Quantity of initial mixture, vapour, distillate, still product,

' reflux (kg/h)

x  Concentration of the more volatile component in the liguid on
the plate (mole fractions) ]

y  Concentration of the more volatile component in the vapour
above the plate (mole fractions)

y® Concentration of the more volatile component in the vapour

Oxbm™~mgd

Q

i=11

") i=9
[
2 i=13
O
£
% i=6
£ i=15
[}
=
l...
> i=3
25
T,h
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which is in a state of equilibrium with the liquid of composition x
(mole fractions)

K, General mass-transfer coefficient, related to the unit area of phase
contact, calculated by the vapour phase (kg-mole/m?/h)

S Phase contact area on the plate (m?)

B, Particular mass-transfer coefficient in the liquid phase
(kg-mole/m?/h) .

B» Particular mass-transfer coefficient in the vapour phase
(kg-mole/m?/h)

7 Time (h)

At Contact time of phases on the plate (h)
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Figure 4. Response curves for concentrations obtained for a step-like
unit increase in vapour flow rate in the column amounting to 5 per cent’
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The Realization of a Self—adapting Control
Programme in a System with a D1g1ta1 Computer
P. F. KLUBNIKIN

Introduction

Recently there has been a wide expansion in systems in which
the control of a load is achieved using a digital computer.
In these systems by means of the application of the proper
control system it is possible to obtain a self-adaptive (self-
6rganizing) property, even in the case where there is no a priori
information on all the properties of the load and the change
of the load parameters in the course of time.

The elements of the theory of the construction of self-
adaptive control systems are known, but the application of
them in practice often results in substantial difficulties connected
with the special digital computing systems. The main difficulty
is the determination of the characteristics of the load (for.
example, the transfer function) under conditions of normal
operation of the system and the search for the control signal
input to the load, which gives, from one or another point of
view, the best control process.

This paper is devoted to the questlons of the realization of
a self-adaptive control programme in a system with a digital
computer. One method of constructing a self-adaptive control
programme is considered, which permits it to be realized
relatively simply. Results of the experimental 1nvest1gat10n of
control systems are presented.

The Method of Self-adaptation in the Control Programme

Consider an automatic control system consisting of a con-
tinuous part (the load) and a digital computer (DCM, Figure I).
The DCM operates in a realm of periodic repetltlon of a
programme with a time cycle 7.

Let the link between the control input X, and the output
quantity of the system X be given in the form

X*=W;(2) Xg €Y

where X* and X,,* are the values of X and X, at the moment
of time T; W,(z) is the transfer function of the instantaneous
system; z = e~? = e~7% is a lag operator.

Then.as is known'—3%, in order for (1) to be satxsﬁed the
control system can be realized in the form of the block diagram
shown in - Figure 2, where for the transfer functions of the
elements of the programme the followmg conditions should be
satisfied

W; (2)
Wy (z).

Dy (2)=W3(2), D3 (2)=y; @

where Wr(z) is the discrete transfer function of the load. The
" transfer function D,(z) is chosen arbltrarlly In the most simple
case

. time-dependent coefficients (| = 1,2, 3, ...,

Ciz+C,
Ciz+1

Howeyver, to satlsfy the conditions (2) and, consequently to
obtain the prescribed properties of the system, is impossible ¢
when the transfer function of the load Wx(z) is unknown or
when its coefficients have an unknown time dependence, which
is often the case in practice. It should be noted, that in the
indicated situation a general.control programme, calculated in
the presence of complete information about the load, is usually
not convenient.

Therefore, the first step in a self-adaptive control programme
is the determination of the discrete transfer functlon of the
load, which is written in the form )

X*
d_*= Wy (2)=

D,(z )— 3

A, 2"+ A, 2" 4 Az
B,z"+B,_{z"" '+...B,z+B,

4

where 7 is the order of the load equations; A,(7), B;(¢) are
nj=01,2,...n.

Consider that the computing-time cycle of the DCM is
chosen so that the coefficients 4;(r) and B;(¢) are unable to
change significantly over several cycles, and that # is unknown.
Then in order to determine during the process of operation of
the system the current values of the coefficients 4, and B;, and
consequently Wx(z) for a given moment of time, it is possible
to use two simpler methods. ‘

The first method is similar to that described in a previous
work* and is based on the solution of a system of equations,
which is obtained by using the expressions (4), i.e.

X,Bo+ X+ 1By + Xy 42B5+ ... + Xy 4Bl

=d; 41 4] +disrAr+
where k = 0,1,2, ..., 27

tdiiaA, &)

dy=d(t—kT)uX,=X (t—kT)

are the values of the input and output quantities of the load
measured in the kth preceding calculation cycle; 4, .and B/
are the approximate values of the coefficients for the current
calculation cycle.

"“The system of eqns (5) is solved on the DCM. relative to
A; and By’ by one of the known methods, for example by the
method of iterations, and Wy (z) is determined in the same way.
The second method uses the principle of a ‘learning model’s
and includes the following.

Using the values of X, and d;, (k = 0, 1, 2, ..., ) available
in the memory of the DCM, a search is carried out by the

N
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gradient method for the magnitudes of the coefficients 4, B;,
which give a minimum in the mean difference

D= 31X (=o)X 1=

m v=0
where T is the number of cycles for averaging
’ X* = Wy (2)d*
XE=Wyire (2) 4*

Wranm(2) is a ‘model’ transfer function for the load formed
in the DCM. This method is illustrated in the diagram shown

" in Figure 3.

The second stage of the method described for building a
self-adaptive control programme is the determination of a con-

.trol signal 4, which will guarantee the stability of the system

and -satisfy (I) or a better approximation to this condition. As
a criterion for the approximation to (1) it is more useful to
select the mean absolute value or the mean square of the error

7 vzole(t—vT)l ©)

—7 Zo[a (t-vT))*.
where A is the number of averaging cycles:
=@ - W] X;
W3'(2) is the transfer function of the instantaneous system,
Wy (2) [D1 (2)D,(z)+Ds (z)] N
1+D,(2) WH (2)

Substituting 1n (7) the values of D;(z) and D,(z) from (2),
one gets

Wi ()=

Wy (2) |
WH’; @ )+D2 (2) Wy @)

14D (2) Wy (2)

Obviously in the general case Wun(z) # Wwa(z) and conse-
quently W3 (z) # Wy(z). However, as experimental investiga-
tions have shown, even a relatively rough approximation
Wi (z) to Wy (z) for the condition of stability of the instan-
taneous circuit of the system (Figure 2), gives a behaviour of
the system thalt is close to that prescribed. .

Thus on the basis of (6) and (7) one has

aav=F(C19 C25 C35"')_ \ (8)

The stability of the system reaches that sought in the region
of the coefficients C;, C,, and C; of the minimum &,,. The
search is carried out by means of extrapolation in the DCM of
X, in r-conditional cycles and the calculation of &,,g for these
cycles.

The idea of the method is explamed in the diagrams shown
in Figure 4. As a result, for each cycle of the DCM the following
order of operations is obtained:

(1) Input X, and X.
(2) Extrapolation of X, in r-conditional cycles.

Wi (z)= Wy (2)

1

In the simplest case for linear extrapolation from the preced- .

ing cycle one gets v
Xop(t+2T)=2[Xo(t)— Xo(t—T)]+Xo(t) ()]

(3) Determination of the coefficients of Wy (2).
(4) The search for the minimum &,,r in the region of the
coefficients D,(z) taking into account the next r cycles.

For the method of the modified gradient, on the basis of (8),
one has the following formulae

8(01)=FA (C1+AC,C,,C3)—F(C,,C,,Cy)
avE AC

(Cz) FA (Cla C2 +AC, C3)_F(C17 C29 C3)

8V AC
£ = FA(Cls C,,C3+AC)—~F(Cy, Cy, C3)
AC

AC, =— kefaf}’z)
AC, = —keliy
ACy= — kel

vy (Ci+AC)Zz+C,+AC,
D)=, T AC) 2 41
XTE=W3 (Z)XgE: X:E=(XTE—X§)D’2 (2
X?;E W;(z2)

Wan (2)

dy=X3p+X3p (10)
[Note: the quantity AC can be taken equal to unity.]

S b XE= Wi (@) d

where &, are the partial derivatives with respect to the coeffi-
cients Dy(z); k is the coefficient of a step in the direction of
the reversed gradient; AC is the trial increment; Xz, X5, X;E,

" Xk, dg are the values of the corresponding quantities in the

conditional cycles within the DCM (the index E indicates extra-
polated values of the corresponding quantities).

(5) After an m step search the output signal from the DCM d
is calculated in accordance with the diagram shown in Figure 2.

dt)=X,(+X3(0

X,()=C[X,()— X(t)]+C1[X1(t—-T) X(t—T)]
—C3X,(t—T)

X, ()=, Xo (= T)+ GoXo (=2 )+ ..+ GyXo(t=mT)

X3(t)— GXo(t)+ (GB1+G2)X -1

ot BG Xo[t—(m+n 1)T]——X3(t—T)

- —i}:)g [t—(n—1)T] 11
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~ Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3




Declassified and Approved For Release 2012/12/14 : CIA-RDP80T00246A023500250001-3

Here one takes
Wy (2)=G,z+G,2° 4+ G32° + ... +G, 2"

(6) The output of the control signal d and the updating of the
information in memory.

In Figure 5 is shown the logical flow diagram of a self-
adaptive DCM programme which assures that the given opera-
tions and the calculations according to the formulae (9)~(11)
will be carried out. Circles indicate conditional transfer opera-
tors (transfer control), and the conditions are written inside
them. As can be seen from the flow chart, 15 cycles are provided
for in the control programme, in the course of which normal
control is achieved according to the diagram shown in Figure 2.

This is required for the accumulation of information in the

DCM. No particular explanation is required for the remainder
of the flow chart.

It must only be noted that the number of conditional cycles
in the DCM must be chosen so that the time for accomplishing
the operations described does not take longer than the cycle
time 7. If, for a minimum number of conditional cycles (one or
two), it is not possible to satisfy this condition, then it is necessary
to use a DCM that is faster acting (in which each arithmetical
or logical operation is executed in less time). !

Results of Experimental Investigations

In carrying out the experimental investigation of the load in
the system of Figure I its dynamic model was changed. The
dynamic model of the load was linked with the DCM through
a device transforming a voltage into an. 8-digit binary code or
the code into a voltage. The control input Xj is supplied in the
form of a voltage and fed through the transforming device to
the DCM. The diagram for the realization of the control system
during the performance of the experiment is shown in Figure 6.

A control programme was fed into the DCM corresponding -

to the flow diagram shown in Figure 5. The dynamic model of
the load was characterized by the transfer function

K(T,S+1)

Wu )= 50752 2 TS 1) (12

The quantities K, T, o I, and & can be varied in time over
the following limits: X = 0-1 + 0-001; Ty =15+ 0-2; T} =
0-2-0-5; & = 02 < 0-05. :

The rate of change of the quantities indicated did not exceed

1-5 per cent/sec from the initial value. The calculation cycle in‘

the DCM was equal to T 0-15 sec. The connection between
the control input X, and the output of the system X was given
in the form

A (z)=%<z+z5+z3) @)

For fixed values of the coefficients Wx(s) of (12) and with

- fulfilment of the conditions (2) the system has a first-order

instability and a transfer process defined by (13). The rate gain
in the system is relatively small. Its increase is limited by an
instability in the instantaneous circuit for the selected structure
Dy(z) of (3).

509/3

In Figure 7 is shown an oscillogram for the development of
a control system with normal control (self-adaptive programme
excluded). As the experiment shows for normal control the
system is extremely sensitive to a change of the coefficients
Dy(z), especially when this leads to an increase in the gain of the
instantaneous circuit. In this case a change in the coefficients
C;, Cy, and C; by 10-15 per cent makes the system unstable.

‘The same effect occurs in the system with a change in Wg(z).

On putting a self-adaptive control system into operation for
a short time (10-15 sec) the optimal value of the coefficients
D,(z) was found and the error was reduced to a minimum. In
the process of operating, the system automatically adapted itself
to the changed characteristics of the load.

In Figure 8 are shown typical curves of the change of the
coefficients Wx (z) during their determination in the DCM. The
transfer function corresponding to (12) is written in the form

alz+a222 + a323
(1-2)(asz*+asz+1)

Wy (2)= 14

It can be seen from the curves that even for 6-8 sec the
coefficients of (14) a; approximate their true values; indicated
on the graph by broken lines.

The curves.in Figure 8 were made for the very worst case,

where the determination is carried out by a step input to the
system applied at the time ¢ = 0, after which X remains con-
stant. For -an arbitrary time change of X,(¢) the errors in the
determination of the coefficients are significantly decreased and
do not exceed 5-10 per cent.
- In Figures 9 and 10 are shown oscillograms showing the
evolution of the system in the process of changing the coefficients
Dy,(2), C, Cy, and C,. The oscillograms in Figure 9 correspond
to a combination of initial values of C;, C,, and Cj for which
the total gain pa of the instantaneous circuit of the system, i.e.,
Wr(1) Dy(1) is small and for which the variable input signal
Xo(®) error is large. The oscillograms in Figure 10 correspond
to initial values C;, C,, and Cs, which apply to an unstable system.
In both cases, in a relatively small time the system automatically
selects the optimum value of the coefficients D,(z), for which
the error is a minimum for the given control input X(2).

[It is interesting to note that when the load simulator is
switched off (X = const.) in the course of a few cycles of the
operation of the DCM the quantity &,k is reduced to a minimum
in the same number as for X,(¢), which indicates the efficiency
of the search method used.]

Conclusions

The proposed method of constructing a self-adaptive control
programme can easily be realized in a DCM and requires-a
relatively small number of instructions in the programme. ’

For the determination of the dynamic properties of the load,
in the process of normal operation of the automatic control
system with a DCM, it is useful to use a transfer function in the
form Wy (z) (the equivalent of a difference equation). Here a
good result in the determination of the coefficients of Wx(z)
gives a method presented above, which is based on the principle

"of a ‘learning model’.

The experimental investigation showed the efficiency of the
self-adaptive control programme, constructed according to the
proposed method.
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Figure 7. Oscillogram of the evolution of an input control system with
constant coefficients D,(z) with normal control

C, =025 C,=05, C;=—025 selected by numerical means
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Figure 8. Graph of the change of the coefficients a; in the process of searching in the determination of Wy (2)
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Figure 9. Oscillograms of the operation of the system:
-AC=25 K=098, m=3, r=2, 2=1Cy,y=Cyy=Cy, =0 4
(a) portion of initial operation
(b) portion after forming the coefficients
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Figure 10. Oscillograms of the operation of the systems: C = 275,
K=098, m=3,r=21=1
-~ ’ (1) initial operation .
(2) after forming the coefficients
(@ Cip= —098 Cypy= ~025 C4 =08
®) Cy=—09 Cp= 022 Cp=023
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Non-Linear Programming in the Investigation of Optimal
Automatic Control Systems

N.Y. ANDREEV

This paper presents a method of solving a problem in non-linear

programming. The essence of the method consists in reducing ~

the set problem to a repeated search for a solution of a linear
programming problem and the choice of values for certain
additional parameters that are introduced. Non-linear program-
ming problems of a similar nature may be met with in the
selection of optimal automatic control systems.

Presently linear programming has deeply penetrated into the
techniques used for investigating automatic control systems.
Academician Pontryagin’s method!, which determines the
optimal control for an automatic system in a number of practic-
ally important cases (e. g. the solution of the problem of optimal
linear high-speed action), contains a linear programming
problem as one of its intermediate stages. Bellman’s method of
dynamic programming?, which is of great generality and is also
used for investigating automatic control systems, has a linear
programming problem as an intermediate stage in a number of
cases (when the profit function is linearly dependent on the
selected parameters). Linear programming methods are -used
for solving reliability problems?, problems of rational tolerances
in the production of assemblies?, and many other problems
closely connected with the investigation and development of

automatic control systems. It should be noted that in a number

of practically important cases the investigation of automatic
control systems reduces to a complex problem—a non-linear
programming problem, whose solution has so far only been
obtained for certain particular cases?.

This paper puts forward a method of non-linear programming
suitable for the solution of a broad range of problems. This
method relies essentially on the techniques of linear programming.
Therefore the formulation of the linear programming problem
is set out below.

As is known*~5, this problem is expressed in the following
manner. It is necessary to find the greatest value of a linear
function of n variables x;, x,, ..., x,

L=L(xy,X, .., X)) =P3X1 + P2Xs+ ... +p%, (1)

when the variables are subject to constraints of ‘the form

o +a,x,=b,

@

....................

Ay X1+ ..o +a,,X,=b, ‘
dyX+ ... +dyx, <1

3

" function F of the variables x,, ...,

The relations (2) and (3) determine the region G of variation
of the variables x;, ..., x,. These conditions can be transformed
in such a way that either m or r becomes zero%. In actual problems
one uses the method of writing the conditions that is most .
convenient.

In actual problems the function L serves as an index of the
quality of the solution. The parameters xy, ..., x,, are character-
istic of the object and 'the investigation, and have various
physical significances according’ to the problem. For example,
in solving a problem on high-speed action these parameters
appear as control actions. :

A geometrical interpretation can be given to- the linear
programming problem as follows: it is required to find the
greatest value of linear function L of the variables x;, ..., x,,
whose variation is confined to a region G given in the form of a
polyhedron in n-dimensional space.

Efficient techniques have been developed for solving the
linear programming problem? 5. But the linear programming
method is inapplicable when either the quality index is a non-
linear function F (xy, ..., x,,) or the region G of variation of the
parameters x;, ..., x, is determined by non-linear relations
between them. Such cases arise, for example, in solvmg the
high-speed action of a system:

1. If the equations of the system include non—linear terms
in the control parameters (quality index a non-linear function
of the parameters);

2. If the region G of variation of the parameters is deter-
mined by non-linéar relations, e.g. of the form

xi+ ... +x2<R?

(the region of control forms a hypersphere centred on the origin).

If only the relations defining the region G are non-linear
while the quality index is a linear function, one can replace this
region by one bounded by relations of the same type-as (2) and (3)
which coincide accurately enough with the original region
(e.g. the hypersphere may be replaced by a polyhedron circum-
scribed to it). The problem is thus reduced to one of linear
programming.

If the quality index is a non-linear function F while the region
G is determined by linear relations such as (2) and (3), one can
sometimes replace the non-linear function F(x,, ..., x,,) by one
that is piecewise linear, and proceed to solve the problem by -
linear programming methods®. But this device cannot always be
used, and involves very bulky computation when it is applicable.

In view of what has been said, the following formulation
of the non-linear programming problem is of practical and
theoretical interest. Let the quality-index be a given non-linear
X,. Without loss of generality,
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it may be considered that thé function F(x, ..., x,) may be
represented as a function @ of certain linear forms L;, L, ...,
Lyt '

F(X1,%25 003 %) =®(Ly, Lp, ooy Ly q) -4
where @ is a given function of the variables Ly, ..., Ly}
Li=qio+qux;+ oo T GinXy (%)

the g,; being given numbers for i = i,2,..,nand j=0,1,2,
..., n, while k < n.

It is required to find the greatest value of the function F
under the conditions (2) and (3). .

Before proceeding with the solution of this problem, it must
be explained why the function F is replaced by ®@. The fact is
that in many practical problems the number » of variables is
large, and this severely complicates the process of finding a
solution. Therefore it is worth while, if at all possible, to go
over from the function F of many variables to the function ®
depending on a lesser number of variables L;. Such a transition,
as will be seen from what follows, simplifies the procedure for
obtaining a solution.

Two examples are given to illustrate this method of transition
to a smaller number of variables.

Example 1—F (x,, X, X3) = X + X% + X2 + 2 X5 X5.

This function of threee variables x,, x, and x; can be
expressed as a function of two other variables L, and Ly:
Li+L]

F(KXI,XZ,X3)=(I)(L1,L2)= 2

where L, = x; -+ Xp -+ X3, Ly = X; — X5 — X3.
Here n =3 and k = 1.

Example 2—F (x;, x;) = x2 + x2.

This function of two variables cannot be expressed as a
function of a lesser number of variables L,. In this example one
may put L, = x; and L, = x,. Here n = 2 and &k = 1.

The greatest value of the function F in the region G of varia-

- tion of the variables x,, ..., X, as defined by conditions (2) and (3)

coincides with the greatest value of the function ® in the region Q
of variation of the variables L, ..., L;+, as determined also in
the final analysis by conditions (2) and (3). The greatest value
of ® may be attained either within the region Q or on its
boundary S. Consider each of these cases separately.

First Case

Suppose the function @ attains a maximum within the
region Q. In this event the problem reduces to finding a maximum
of a function of k£ -+ 1 variables. It is known that a necessary
condition for @ to have a maximum is that its partial derivatives
should vanish: :

o
—=0, i=1,2,....,k+1 6
3L, i + 6
at a certain point in the region Q of the parameter space
(Ll’ “eny Lk+1)'

If @ is not differentiable everywhere inside Q, some of the
conditions (6) may be replaced by these:

o®dL,, does not exist,v = 1,2,...,m <k 4+ 1.

In the general case the system of eqn (6) may have several
solutions. Out of them must be chosen the one that corresponds
to the greatest value of @. Suppose this solution has been found:

L=L,, i=1,2, ... k+1 Q)

Substituting the values (7) of the variables L; in eqn (5), it is
possible to determine the values of the quantities x; = xy,, at
which the required greatest value of F is attained. Thus, in this
case, the problem is solved by using the normal methods of
classical analysis.- Conditions (2) and (3) are here used only to
reject those maxima of @ (or F) that do not fall within Q (or G).
This first case is rarely met in practice, since the quality index.
is normally taken as a function F which has no maximum within
the region G. The case considered below is of greater practical
interest.

Second Case

Suppose the function @ has no maximum within the region O,
and attains its greatest value on the boundary S of this region.
In this case the determination of the greatest value cannot be
solved by the techniques of classical analysis, and so the follow-
ing two-stage method is proposed for solving this problem.

In the first stage one must determine the boundary S of the
region Q, while in the second, one finds the greatest value of the
function ® on S. Here one may make use of the ideas and
techniques developed by the author” 8, applying them to a
problem of a different nature.

To determine the boundary S one may proceed in the
following manner. For fixed values of the variables

L1=C1,L2=C2,...,Lk=ck (8)

one must find the greatest (and least) value of L4, (see Figure I,
where k = 1).

Since the greatest and least values of L+, are determined
by similar means, from now on.only the greatest values of
L.+, are mentioned (i.e. only one half-branch of S is dealt with).

It follows that, to find one point on S, one must obtain the
greatest value of the linear form L, under conditions (2), (3)
and (8). This is a typical linear programming problem. Condi-
tions (8) have essentially changed nothing in conditions (2)
and (3); the number of equations has merely increased by k.
Taking various values of the parameters C,, C,, ..., Cy, one
can also derive the points on S corresponding to them. If these
points are chosen so as to cover the whole of .S densely enough,
the first stage of the problem may be considered solved.

Now it is necessary to solve the second stage of the problem,
i.e. to find the greatest value of @ on §. This is easily solved if
the number k of dimensions of S is small. In this case the
greatest value of @ can be determined approximately by com-
paring the values of @ at the nodes of a network formed by
discrete values of the numbers Cj, C,, ..., Cy. If the number &
of dimensions of S is large, producing a close network of values
of @ on S becomes an extremely laborious task, which cannot
always be carried out in a reasonable time even by the use of
modern high-speed computer techniques. '

In this case the determination of the greatest value of @
reduces to finding the maximum of the function

f=f(C1,Cay ey CY=B[Cy, .., Cio L4 1 (Cas -, €] (9)
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where Ly, (C,, ..., Cy) is the greatest (least) value of the linear
form L+, under conditions (2), (3) and (8). The greatest value
of fon S in general coincides with the maximum of this function,
i.e. isattained within the region of variation of the parameters C;.
To determine the maximum of f = f(C,, ..., C;) use can

be made of the method of most rapid descent® ®. The combina-

. tion of the method given above (which leads to the boundary S
of the region Q, and to the function f) and the method of most
rapid descent (leading to the maximum of f) makes it possible
.to avoid the computation of values of f at a large number of

points densely covering the whole region S of variation of the - '

variables Cy, ..., Cy, and to replace these bulky calculations by
more economic ones according to the following plan.
Let a first approximation to the variables

C1=C11, C2=C21, ooy CkZC“

be chosen from any considerations. To this corresponds a value
of the function f; = f(Cyy, Cy, ..., Ciy). Now the direction of
the gradient of f at this point is determined, which as is known

is given by a vector in the space G = (C,,..., C;), whose
projections on the Cj, C,, ..., Ck axes are respectively

of of - of

0C,’ 0C, "' 0C,

The partial derivatives 0f/0C; may be derived analytically if one
has succeeded in obtaining a simple analytical expression for f.

But one cannot count on this, since normally the expression
for fis complicated and, what is more, cannot be derived in
explicit form. Thus in the general case the derivatives 3f0C;
must be obtained approximately as the ratio of finite differences

o M
9C;, AC;
where Af; = f(Cy, ..., Cl—D1s Cy + AC;, Clipys - Crd) —
— f(Ciyy .oy Cp). ’
After determmmg the gradlent of fat the point (Cyy, ..., Ciy),

a displacement in the space G is made along this gradient vector,
" i.e. the values of f are considered for the following values of the
“variables:

o .
oC,

k) are evaluated at C, = Cy;,

CI_CII _""8, veoy C Ck1+
where the 0f/0C; (i = 1,2, ...,
C2 = C21, PRRTY Ck =

The displacement in the chosen direction is terminated at
the value ¢ = ¢, at which the function

=f|C
61 (8) f< 11+aC
reaches a maximum. This maximum of &; (¢) may be determined
graphically (see Figure 2).
The values of the variables

af o,
C,=C;,=C
1=C12=0y +%- ac, ac,
are taken as the second approximation. The value of the function
f=f,=f(Cy, ..., Cyy) is taken as the second approximation

to f.

»C Ckz—cu i
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Then the third and succeeding approximations to the
variables Cj, ..., C;, and the function f are obtained by the
method given above. ‘

The (v, + 1)th approximation is given by the formulae:

of of
Cy (v+1)=clv+'ﬁ'8w veus Ck(u+1):Cku+a—(];k'Eu

where ¢ = ¢, corresponds to a maximum of the function

v o_ of of
é(c)_f<clv+56189"': Cku ack )
fv+1=f(cl(u+1), Cz (v+1) ~--ka(u+1))

The process of finding the maximum of fis terminated when two
successive approximations to f differ by a negligible amount.

In the general case the function f may have several maxima,
and it is necessary to find the greatest of these. It should be
noted that in the general case the greatest value of fis attained
within the region S of variation of the parameters C;, C, ..., Cy,
i.e. it coincides with a maximum of this function. Only in rare
individual cases is the greatest value of fattained on the boundary
of the region S. This assertion follows from the fact that in the
general case the function F (x,, X,, ..., xfi) reaches its greatest
value on a face, and not at a vertex, of the polyhedron defined
by conditions (2) and (3).

Based on the above, the following sequence of operations
can now be recommended for determining a maximum of the
function f.

(a) Choose the first approxunatlon to the varlables

= Cll: . Clc Clcl

(b) Compute the value of the first approxxmatlon to the
function f = f; = f(Cyy, ..., Cy)-

(¢) Evaluate the components of the gradient vector of f at
the first approximation point:

o o
3C, 3G,
(d) Calculate the function

0 0
51(3)—f<cx1+a£ Cld’i’aér >
for -increasing values of the parameter & = Ae- I, where
I1=1,2,.... The increment Ae¢ is chosen in accordance with
the peculiarities of f that become evident during the process of
computation: the more gentle the variation in f, the larger
can Ae be taken.

(e) Determine the value of the parameter ¢ = ¢ that makes
the function &, (¢) a maximum.

(f) Determine the second approximation

0

0
Ci2=Ci1+t=~ f BC

8C

(g) Evaluate the second approximation to f-

f2 =f(Clz» sz, ERRY) Cle2)~
(h) Calculate the difference between the two successive
approximations to f, i.e. f, — fi. '
This sequence is continued until the difference

fery = fo = F(Cils)s - s Cliin)) — F(Cuts - Ci)
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becomes negligibly small. Ordinarily the number of approxima-
tions that have to be taken when using this technique is not great.
The computations involved can readily be programmed for a
computer dealing with finite differences.

One may naturally wonder whether the method of most
rapid descent cannot be applied directly to determining the

greatest value of the function F (x, ..., x,,) under conditions (2)

and (3). In principle, this approach is also possible, but it leads

" to substantially more complex calculations in the cases where (@)

the number » of variables x;, ..., x,, is significantly greater than
the number k of variables Cj, ..., Cy, and (b) the number of
inequalities (and equations) in conditions (2) and (3) is large.

- The considerable increase in the volume of computation in
the first case needs no explanation. In the second case, it arises
from the fact that the direct application of the method of most
rapid descent here requires that at each step of the calculation,
when ¢ is increased by Ae, one has also to check whether or not
conditions (2) and (3) are sa'tisﬁed.. Also the transition from one
face to another of the polyhedron defined by (2) and (3) involves
a change in the form of a function of n — r variables.

This complicates the programming of the computation.
It follows that the volume of work in deriving each approxima-
tion increases, and so does the number of approximations.

When the number of inequalities in (3) is small and
k +1=n, both the methods become roughly equal in
time-consumption.

These two different cases have been considered above:
(a) The greatest value of F (and ®) is attained within the region
of variation of the variables x,, ..., x, (or Ly, ..., L;+;), and
(b) the greatest value of F (and @) is attained on the boundary
of this region, the function having no maximum within the
region G (or Q). '

The case may arise fal though also improbable, as (@) above]
where the function F (or ®) has a maximum within the region G
(or Q), but attains its greatest value on the boundary of this
region. Consequently in this case the maximum of ® has to be
found and compared with the greatest value of this function
reached on the boundary S, and the greater of the two has to
be chosen.

It may be expected that the techniques of solving non-linear
programming problems will develop in the future, and that
experience in this field will accumulate. Therefore it is worth

making the following more general statement of the problem. .

Let there be a method for determining the greatest (and least)
value of the function ¥ (x,, ..., x,,) under conditions (2) and (3)
that are imposed on the region of variation of the variables
X1, ... Xp. It is necessary to find the greatest value of the function

F(xy, ... x)=® (¥, Li,...,L) (10)

WhereLD = dpo + dpm X1 + .+ Gon Xns P = 11 2’ sy ks k< n,
and conditions (2) and (3) are satisfied.

Consider @ as a function of the k + 1 parameters ¥, L;,
..., L. The greatest value of this function may be attained
either within the region Q of variation of these variables or on
its boundary.

If the greatest value of ® is reached within Q (an improbable
case in practice), then the problem reduces to finding the maxima
of this function, which are determined by the equations:

@ 0D

55=0 =0 P=L2..k an

These equations enable one to determine the values of the
functions ¥ =Yy, L; = Ly, ..., Ly = Ly, which correspond
to a maximum of ®@. If the solution of eqn (11) is not unique,
then one must choose from all its solutions the one that corres-
ponds to the greatest of the maxima of ®@. From the relations

. T(xl,...,xn)=‘1'0
dpotdpX1+ oo TqpX =Ly, p=12,....k (12)

one determines the values of the variables x,q, Xg, ..., Xng
corresponding to the greatest value of the function ®@. In the
general case the solution of the system (12) is not unique.

If, however, the greatest value of @ is reached on the bound-'
ary S of the region Q (which is more likely in practical cases),
then it is desirable to solve the problem as stated in two stages.

§ First one must find the boundary S, and then determine the
greatest value of @ on it. In determining the boundary S, it is
necessary to take given values of the linear forms

L1=C1,L2=C2,...,Lk=ck (13)

and then determine the greatest and least values of the function
¥ (x1, Xg, - .., X,) under conditions (2), (3) and (13).

It has been pointed out above that there is a method for
solving this problem {the addition of (13) does not in principle
alter conditions (2) and (3)]. Taking various given values of the
parameters C,, ..., C; one may obtain the corresponding values:

\ill =‘P(C1, Cz, veey Ck)
® =®[¥(Cy,.... C), Cpy vy Gl =f (Cys vy C)
X; =xi(C1,C2,.-.,Ck) i=1;2,...,n

The second stage of the solution consists in the determination
of the maximum of f= f(C, ..., C;) and the values of the
variables

X17=X105X2=X205 ++05 Xp=Xpo
corresponding to this maximum. This part of the solution is
carried out in exactly the same way as for the first statement of
the problem. A simple example is. now given to explain the

technique that has been proposed for solving the non-linear
programming problem.

Example
Determination of the greatest value of the function

F(x1,x5,%3)=x, (xz +X3)
under the conditions:
. x1+2x2+3x3S60
x,20,x,>0,x,>0

The given function F of the three Variables x;, x, and x; can
be expressed as a function @ of two linear forms L; and L,:

L1=X2+x3,L2=x1
with
‘D(Ln L2)=L1 ‘L,
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In this example @ is a monotone increasing function. Hence
it has no maximum, and attains its greatest valtie on'the
boundary S. Following the procedure set out above, one deter-
mines the boundary S of the region Q of variation of the linear
forms L, and L,. In this case the boundary is a certain curve
(a one-dimensional domain).

In order to find S, it is necessary to take various given
values of the linear form L, and to evaluate for each the greatest
and least values of L,. The question arises of how to choose
these given values of L,. This question is easily answered. The
greatest and least values of L, under the above conditions are

. readily obtained by linear programming methods and are:

0<L,<30

Taking a certain value L, = C,, where 0.< ¢ <30, the greatest
value of L, is found (the least value of L, is of no interest in
this example, since @ is 2 monotone increasing function in the

"variable L,). This greatest value is easily obtained by linear

programming methods (or by other means), and may be expressed
in terms of C, in the followmg form:

L2—60 2¢C,

The functlon ® can be expressed in terms of the parameter C1
as follows over the section of .S that is being considered:

®=C, (60—2C,)

It can readily be seen that the function @ on the boundary §
= G = 15.
Now it is easy to determine all the quantities of interést:

Do=Fo=15(60—2-15)=450
X10=60—215=30

’

v Figure 1

, 8
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The values of xy and x,, are obtained from the equations.:‘

X, +x3=15

304+2x,+3x3=60 (see above conditions)

Solution of these equations gives the following values for x,, -

“and xg:

.x2.0=15, X30=0
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The Approximate Calculation of a Class of Automatic
Systems with Forced Parameter Optimization
Yu.I. ALIMOV '

Introduction

§ 1. This paper considers an automatic system (hereafter called
System A) that consists of linear continuous filters ®; and @,
connected in parallel, with a test signal 6 () at the input and
closed-loop astatic systems for adjusting the parameters
X = (Xy, ..., Xn) of filter @, (see Figure I). The self-adjusting
circuit includes a detector & of the error signal & (), phase
discriminators ®;, averaging filters W,, and integrating net-
works. The control actions in the parameter-adjusting circuits
are formed by using a search modulation #Ax (¢) of the para-
meters. The defined parameters Y; and Y, of filters @, and @,
respectively vary with time according to a law that is only
known approximately beforehand.

In practice, the following variants of System A are most
often met.

(1) Y, =const., X, = Y, (f). The filter @, is a stationary
calibration display unit, while the filter.®, is an automatic
system with extremal adjustment of its correcting elements,
compensating given to a extent the drift of the parameters
Y, ()** or the variation in the form of the external action
0 (1)°.

(2) Y; = Y, (?), Y, = const. Filter @, is a controlled plant
with variable dynamic properties, while filter @, is a learing
model of this plant$.

Of course, the general case ¥; = Y, (), Y, = Y, (¢) is also |

possible in practice; for example, a calibration display unit @,
with programmed parameter variation.

§ 2. In Part I of the paper the small-parameter method is
used in deriving enough general approximate equations for the
processes of self-adjustment in System A under the assumption
that the amplitudes of the search signals uAx (¢) are small. The
equations take account of the limited memory of filters ¢b; and
¢, and cover the case of any given explicit test and search
actions. The control signals in.the self-adjusting circuits are
expressed in terms of the frequency characteristics of filters ¢,
and ¢, and the spectra of signals 0 (f) and uAx (¥). in Part 11
the general equations of motion for System A are simplified,
taking the assumption that the search signals uAx (f) are
sinusoidal. Then, as a simplified mathematical abstraction, the
case of an almost periodic action 6 (¢) is examined in detail in
Part III. A very simple- analysis of the relevant equations of
motion shows the desirability, with a high-frequency sinusoidal
signal uAx; (¢), of using, in the phase discriminator, a reference
voltage phase chifted with respect to this signal, which permits
one to make use of the extra useful information carried by the
quadrature component of the search-frequency signal, by ana-
logy with the practice, in radip engineering, of using amplitude

and phase modulation simultaneously’. Part IV uses the example
of awhite-noise test signal to show that the equations derived
may also be applied to the description of System A with stochas-
tically defined signals 0 (f), without relying on the hypothesis of
the closeness of random processes in the system to stationary
ergodic ones. There is a brief discussion of the relation between
the results derived here and those in previous papers'—¢. Some
attention is also devoted to quasi-stationary modes of self-
adjusting operation. ]

In conclusion it should be stressed that all the design examples
quoted have been chosen to be simple as far as possible, and that
the main emphasis is on the physical interpretation and qualit-
ative analysis of the mathematical relations derived.

1. Derivation of General Equations of Motion for the
Self-adjusting System Considered :

§ 3. The most important of the assﬁmptions, under which
the equations for the processes of self-adjustment in System A
are derived below, are first set out:

(a) The amplitudes of the search-modulation signals are
considered small, and to emphasize this they are denoted by
ulx (7) where p is a small parameter.

(b) It is assumed that System A starts to operate at a certain
instant ¢ = #,, having been in an equilibrium condition up to
that time, and thus the output quantity of filter @, (i = 1, 2) is
determined by the relation -

t
& ()= f 0@ K,(1,1)dr, i=1,2 )
to
where K; (¢, 7) is the weighting function of filter ®@,.
Equation (1) is expressed in the form

-c,.(t)=ft_T9(z)K,.(t,r)qz+f' 0(1)K;(1,7)dt, i=1,2
to T .

t—

to<t—T<t 2)
Let the filters @, be stable. Then if
|0(8)] <const (—oo<t< +0) 3

it may be considered that for a certain sufficiently large T the
first integral in eqn (2) is negligibly small, and

E(1)= f t 0(0) K (t,7)dt, i=1,2 @)
t—T

In other words, this means that by the instant ¢ information on
the state of filters ®; and on the values of the signal 8 (7) at
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instants T > ¢ — T is practically completely lost, and the value
of & () may be identified with the reaction of filter @, to the
signal
O(x)fort—T <1<t :
HT (T) = . o
0 outside that interval )

assuming that &; (i) =0forr<t—T.
The conditional nature of any choice of a numerical value
for T matches the complexity of the actual situation: the

‘memory’ T of a linear system depends substantially on the

criterion chosen and on many factors that are often not subject
to any sort of accurate quantitative calculation (on the structure
of the signal 0 (f) within the bounds of the natural and easily
enough controlled restriction (3), on the level of fluctuating
disturbance in the system, etc.). If filter @; is near to the stability
boundary in parameter space, then of course 7— oo. If stability
is lost then (4) is not true even for T' = oo, and strictly speaking,
one cannot apply either the theory developed below, which takes
no account of the initial perturbations always existing in a
system, or the theories of Krasovskiy?, Kazakov® and Varygin®.

(¢c) It is also considered that the variation in parameters
Y, (9), Y, (f) and X (9) over the time interval T may be neglected.
The time-dependence of the frequency characteristics W; (jw) =
W, (jw, 1) and W, (jo) = W, (jo, ) of filters ®; and ®, (with
Ax (r) = 0) is only expressed in the taking of the values of
parameters Y, (¢), Y,(z) and X () as ‘frozen’ at the given
instant #: '

Y (0)=Y,(t), Y, (0)=Y,(1), X (1)=X(¢) for t—-T<t<T
(6

(d) Finally, for the sake of definition, it is assumed that the
state of filter ¢, is described by the ordinary differential equation

n m
2.az,, (Y3, X + pAx) D*&(1))=). by, 1 (Y2, X + plx) D'8(2)
q (M)
D=— <
a M=t
with coefficients a,,;, (Y, X) and by, (Y5, X) that are analytic
in X. It is evident that

W, (jo)=R, (jo) Q3" (jo) (8)
where

0, (D)=k;1 a2,k(Y2’ X)Dk

R, (D)=l—z1 bz, 1(Y23 X)Dl

Given assumptions (a), () and (¢) the proposed method of
calculation can be generalized without much complication to
the case where pure delays are present in the filter @, under
adjustment.

§ 4. It is observed that assumption (b) allows one to make
calculation in a frequency region bounded only by consideration
of the ‘shortened’ present spectrum?®

t

0,(tye o dr  (10)

t
0rGw, =]  0()e d1=J
=T

of the signal 0 (¢). Thus, in particular, taking into account the

©

quasi-stationary nature of the filter W, (]w, ) the following
relations are obtained for & (¢):

£1<t>=§;f_ & (o )¢/ do (n

where

£ oo, =W, (jo, 1) 07 (joo, ) (12)

Considering, instead of normal spectra, the ‘shortened’
present spectra of the type in (10) and (12), generally one can
reflect more accurately in a mathematical model the actual
situations that arise in the experimental development of System A,
and also simplify mathematical operations on the spectra of the
signals 6 (r) and &, (¢) in those cases where the Fourier integrals
for these functions over the interval (— oo, t) diverge. This
approach turns out, in particular, to be very convenient for the
examination of non-ergodic random processes in System A, as
it gives a natural transition to the description of the system in
terms of spectral power densities (see Part IV).

Since this paper only considers explicit (and, what is more,
only harmonic) search signals uAx (7), from now on in order to
simplify the text the ‘full’ spectrum is used as a convenient, if
less accurate, mathematical abstraction

Ax;(v) e/ dr

- W

phi )= f (13)

of the search signal.

§ 5. A solution &, (#) to eqn (7) is looked for in the form of
a series

fz(t)=€2o(t)+/1-€21(t)+ 14

all the analysis below being taken only with the accuracy of
magnitudes of the first order of smallness with respect to the
quantity u [obviously one way of making the theory more
accurate is to take account of more terms in (14)]. Using the
normal procedure? for the small-parameter method, the follow-
ing equation for sequential calculation of the quantities &,y (2, (£)
and &, (¢) are obtained from (7)-(9):

0:(D) £ (O=Ra (D)), D= (1s)

0,(D) sy ()= EA' (t)[aRz(D)e(o 00, (D )ézo(t)]
(16)

it is easily seen that given assumption (b) the memory of the
linear system (16) should be considered as limited to the time
interval 7. Hence, taking into account the quasi-stationary nature
of the filteis W, (jw, £) and W, (jw, f) and the identity 0 W, /0X;
= 0, the following expression is found for the ‘shortened’
present spectrum of the error

eW=1E(0— 5O — péa an
e(jos )= (0)0r (o
w2 os o 3 | U0, 1m0r(in
MsGi@yd (8

where W (jo = W, (jw) — W, (o)
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while the spectra 07 (jw, £) and Ax,;(jow) are deﬁned by eqns 10)
and (13).

Furthermore, in accordance with the circuit shown in
Figure 1, one obtains for the X;-adjusting network

DX,=W,u(D)o (e (0} Ax,(), D=1 (19)

where @ (¢) is the detector characteristic, while

s(t)=%jjo e(jo, ) e/ dw | (20)

The approximate system of eqns (17)-(20) that has been
obtained describes a very wide class of self-adjusting operating
conditions for System A.

The following points are stressed:

(1) These equations, written in terms of the frequency
characteristics, are differential equations (generally speaking,
non-linear) and in a numter of cases are capable of more
effective investigation than the integro-differential equations
derived by Krasovskiy? and Varygin® in terms of weighting
functions.

(2) In distinction to the previous papers quoted2‘4, the
derivation of eqns (17)-(20) does not rely on the assumption
that the weighting function, and consequently also thetransfer
function, of filter @, is actually a function rather than a func-
tional of the signals ,qu ). :

II. Simplification of the General Self-adjustment Equations for the
Case of a Harmonic Search Modulation and a Square-law
Detector

§ 6. If during the whole time of operation of System A the
search' uAx () are nearly harmonic, then it is convenient to
consider that

Axi(t)—:Aicqu,-t for —oo<t<oo, i=1,..,N (21)
(<94 9)
Then in accordance with (13)
Ax; (jo)=n[6(0+2)+5(0-2)] (22)

Substituting (22) in (17) and using the known properties of
6 functions, one finds:

e(jo,)=W (jo)0r(jo,t)
N
%# 0;' (jo) Y,
N i=1

A[w 0: (i@ +@)}0r (j(@+00,1)

a—V—V—{%—)‘?ﬂQ {J(w Q)}0r{j(0— Q,),t}] (23)

Then let
W (jo)=W (jo)l e (9= (v)),
07 (joo, =107 (j, 1)) ™ (@=a(w)) (24
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Taking into account the even nature of the amplitude spectrum
and the odd nature of the phase spectrum in (24), one can
readily deduce from (20) and (22) the following expression for
the error ¢ (7):

s(t)ﬁ%j: {l W (jw)| cos(wt+ ¢ +<;c)

+%u ‘E A;[ReC;cos (wt+a)
i=1 .
—ImC;sin(wt+a)] 10+ (jo, t)|} dw (25)
aW( ]w) e I e /. ]
C=", &V )[Qz G- o Gwra] *0

In calculating the passage of the signal ¢ (¢) through the
detector 9, it is convenient first to separate, in each term of the .
integrand in (24) that is enclosed, in square brackets the com-
ponents in phase with the signal cos (wf 4+ ¢ - «) and those
in quadrature with it. One obtains as a result:

© N
,&(t):n”f {[|W(jw)|+§u Y. Adi(o, z)]
0 i=1

N .
cos(cut+qo+a)+%,u Y. AB(w,1)
i1

s_ir%(wt+<p+oc)}|9f(jw, Dldw 27)
where ’
A; (o, t)=a;(w)cos ;t+ b; (w) sin Q;¢t
a0) =2 (1 @) cos o7 (@) + M7 (@) cos o (@)

t

~|W (jw)| 'a?(M F(@)sin @ (0)+ M (w)sin 9] (w))
(28)

al_W(Jw)l(M (0)sin o] (w) M} (w)smqm (@)

bi(w)=

—|w<1w)1—"’<M () c0s ¢ ()~ M () cos o7 () |

0, (jo) — M- Joi~ (@)

O tit—ay M @° 9
Q(Jw) e et (@)

0, {j(w+'Qi)} M (@)e

[the expressions defining the coefficients B; (w, f) are analogous
to formulae (28) and (29)]. In quasi-stationary self-adjustment
modes, when 2y is small compared with the actual frequencies @
of the test signal 6 (¢), O, (jw) = @, (j(w + £,)), so that

M; efei™ _n_] _,hMi+ elvi* v (30) '

()2 |W(J60)|’

l

bi(w)=0 - €Y
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§ 7. Most often the detector @ may be considered as either
square-law:

o(e)=¢

o ()=le|=(c"*

In both cases the theoretical analysis requires the square of the
error ¢ (f) to be calculated. Taking only terms of zero- and
first-order smallness with respect to quantity u, the following
expression is readily derived from (27):

(32)
or linear:

(33)

g? (t)ﬁzl?Jw f ooD(cu, v)[cos((w—v)t+3,—9,)
0 0

+cos((w+v)t+9,+9,)]dody (34)

where .
D(w, V)>I9T(1w DB (v, t)IlW(Jw)lIW(Jv)I -

x [1 +5 % A {4 (@)W (jo)l ™
i=1

+4;,(v.1) IW(J'V)I"I}] (35)

while

= (0)+a(w)+y (o) (36)

tan (@)= ¥ ABi@,) [t W(jol+5 L Mo t)] _

In all the working below, harmonic search-mddulation
signals are, in fact, considered and as a mathematical model of
System A one takes the system of eqns (19), (32)-(36). These
equations continue to hold adequately until the instant when
through the operation of the self-adjustment circuits the relation

[W (je)l==pN max A; |4;(w, )| (37)
it

becomes true (in that event the approximate expressions in (35)
for 2 (w, v) are already invalid).

IIT1. Theoretical Analysis of Self-adjustment Modés with an
Almost Periodic Test Signal ‘

§ 8. If over the whole time interval that this paper is con-
cerned with the test signal may be represented accurately
enough in the form

M
0()=0o+ Y. 0,.cos(w,t+oy)
K=1

0,, oy, w, =const, O < W 41 (38)
then it .is convenient ‘to consider (38) as bemg true for

— 0 < t< 4 . Then

N
€n =l:1 +‘l2i‘z A A (o, )W (jo, )~ Y4 Ao, )W (jo)l™ 1] A‘
x [cos ((w,— ) t+ 9 — ) +cos ((w+w) t+ 3+ 8)] (41)

where ¢, and A4; (wy, t) are as defined by (36) and (28).
It can be seen from (41) and (28) that the signal e;; is made
up of a sum of harmonics at frequencies w; + w;, 0, + ©0; + 2,
(k=1,...,M,s =1,..., N). In the phase discriminator of the
ith self-adjustment channel the output quantity ¢ (¢) of the
detector & is multiplied by the harmonic reference voltage at
frequency £2;, so that with square-law detection a signal «; ()
is obtained consisting of harmonics at frequencies w,, + w; + 2,
wy + o, + Q.+ 0, (with linear detection in general one also
gets other harmonic components with amplitudes that are first-
order of smallness with respect to quantity u).
If in (38) 0, represents a slowly varying useful signal, while
the sum
M
Y. 6,cos (ot +a) 42)
k=1
represents intense disturbances at sufficiently high frequencies
(w, > 2 0y), then correctly chosen smoothing filters
Wy (D) - D~ —1 should pass only harmomcs of the signal u; (¢¥)
with frequencies
o —w;—8;, w,—

—(@10Q) k>l (43)

It is assumed that the disturbances (42) acting on the system
are such that for k > / the conditions
—y # Qi 5

W — 0 # (2, £ Q) (44)

are satisfied with adequate margin. Then it may be considered
that the constant component in the signal u; () that is passed
by the filter' W, (D) - D' accurately matches that harmonic
of the sequence wj; — w; — (2, — 2;) for which k =/ and
s = i. Then according to (41) and the circuit of System A

dx;
dt

W,,:(D)-E,(¢? (t) m;, cos Q; 1)
where

@=tin [ s

and the values of the parameters X, ¥; and Y, in the expres-
sion for &2 (7) are taken as ‘frozen’ at the instant ¢ [see (6)], so
that

E[e*(7) m,ccoth]— 7 Hbim [EP+EP+ED (46)

z 02 |W (jo)l? (M,kcosqs + M cospy)  (47)

Xik=1

Eg)_a__

EP =~ Z 0% lW(ka)I (M cos @ +Mj cos py) (48)

|0r (jo, )| =n Z Ob(w—w),  wo=0  (39)
k=0
. 0 - . -
and in accordance with (32)~(35) EQ=- Z 07 IW (jo))> —5—= (p( k) (M, sin @;; + Mg sin o)
, (49)
. 1 ¥ . h + eiPik
200 1 . . where the quantities M7 e/ are defined by formulae (29)
FO=7 L 06w IW(ede @) TEE TR
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§ 9. The case of the quasi-stationary mode of dperation
(0o =0 and condition (30) satisfied) are first considered.
Equation (45) for the self-adjustment process becomes

S W (D) L A S O G (50)
ar i 2# i icaxik=1 k J @y |

and thus as a result of the normal operation of the self-adjusting
circuit (without loss of stability, without intense distortion
caused by disturbances etc.) the quantity

kzl 0f|W2 (o) — W, (jwk)lz . - (5D

will be a minimum, i.e. in the complex plane the frequency
characteristic of the filter being adjusted will approach that of
the calibration filter at the points w = w, (k =1, ..., M) in
some mean-square sense. If by varying the adjusted parameters
X the frequency characteristics W; (jw) and W, (jw) can be
made practically identical over some range of frequencies, then
this approach will merely signify that over the given frequency
range W (jw) = W, (jw), and the result of the normal operation
of the self-adjusting circuit will prove practically independent

M
of the actual spectral composition of the test signal X 0, cos

(wp t + &), (w; > 2n) (see Example I). The latter statement
is not valid (see Taylor®, and also Example 2) if the filters
W, (jw) and W, (jw) essentially cannot be made identical.
In this event the closest convergence of the frequency character-
istics W, (jw) and W, (jw) takes place at those points w = wy,
corresponding to large amplitutes 0,, and the nature of this
convergence will change with variation both of the frequencies
wy, and of the ratios between the amplitudes 0,.

Example 1. In a System A with square-law detector, let
filter W, be a controlled plant with transfer function W, (p) =
(byp + b)Y, and filter W, selflearning model® with a transfer
function of the form W, (p) = (X,p + X;)7%, where X; and X,
are the adjustable parameters, by varying which a complete
identity between the dynamic properties of model and plant
can, in principle, be achieved. If

0(t)=0cos(Qt+a), 0>Q,>Q; (52)

then eqn (50) for the quasi-stationary self-adjustment mode
takes the following form:

X1=k1W(pl (D) :
'[(Xl"bl)(ngz‘l‘lel)'”-Qz(Xz—bz)ZXl] (53)
X2=k2W<02 (D)
T(X,=b) (X +X,0,0%) - X, (by —x)%] (54)

k= pA;m 02 (b3 + 530%™ (XT+X3Q0)72, i=1,2 (55)

It can be seen from eqns (53)—(55) that as a result of the nor-
mal operation of the self-adjusting circuit X;— b, and X,— b,,
i.e. in fact W, (jw)— W, (jw), at whatever frequency £ the test
signal (52) is applied. The self-adjustment process forms a
coupled control of the parameters X, and X,. The higher the
frequency £ of the test signal, the more intensively the adjust-
ment of X, takes place (cf. Margolis and Leondes®). The stability
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for small variations of the equilibrium X; = b, X, = b, in
the non-linear system (53)-(55) can readily be examined from
the first-order approximation equations.

Example 2. If in the system just considered the controlled
plant is close in its dynamic properties to the link W, (p) =
eP* (byp + by)71, while W, (p) = (Xop + X7, then for 7 # 0
complete identity of filters W, and W, cannot be achieved by
self-adjustment. Transcribing egn (50) for this process, it can
easily be seen that the result

X - b, cos Q1+ b,Qsin Qr,
X,—bycos Qr—b,Q 'sinQr

of normal operation of the self-adjustment network may
already depend substantially on the frequency of the test
signal (52).

§ 10. Eqns (45)—(49) also permit a number of conclusions of
a qualitative nature about non-quasi-stationary modes of self-
adjustment in system A (6° # 0, conditions (30) not satisfied)
to be immediately drawn.

It is first observed that the equation

0,=0,(jw) (56)

defines a Mikhaylov hodograph!® for a stable [assumption (b)]
linear system, and consequently the curve (56) has a form
similar to that in Figure 2.

It then becomes clear from (45)-(49) that within the limits
of the errors introduced by the terms E% and E'® the normal
operation of the ith self-adjustment channel reduces to the
minimization of the quantity

M
2 0¢IW (o) * (M i cos @, + My, cos pz) (57)
k=0

The self-adjustment error associated with E© will be small

in most cases, since by the very sense of the quantities M ﬁc ef¢i§
[see (29) and also Figure 2] the partial derivatives 0/0x; (M,
cos@t + Mz cos@y) will hardly be significantly different
from zero. The error associated with E will also be insignificant,
since with |@;i|, |@i#| <7 the terms Mjsingj and
M3 sin ¢ 3, are opposite in sign.
If
M cos @i +Mycospy>0, k=1,...M (58)

then the minimization of the quantity (57) has roughly the same
physical significance (see § 9) as the minimization of quantity (51)
in quasi-stationary modes, and thus the result of normal opera-
tion of the self-adjustment network should be taken as acceptable.
But the more strongly the self-adjustment mode differs from
quasi-stationary, the larger are the angles |@ 5| and |5 |< =
the smaller are for the coefficients in (58) (in particular,
the quantity M7 cos@;i + M;jcosp;7), since over a sub-
stantial range of frequencies the quantities M7, are hardly
much different from unity. As a result the quality factor for the
X; tracking system falls, while for |@ % | > 7/2 the coefficient
(58) becomes negative and minimization of the weighted sum (57)
of squares | W, (jwy) — W, (jooy) |2 loses its evident sense, or
even on inversion of the self-adjusting servo-system occurs
(particularly if all the coefficients (58) become negative, which
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may happen if a strong signal 6 (r) is applied at a frequency
close to a search frequency £2,—see Example 3).

Example 3. Let the adjustable filter in System A be a link
with transfer function W, (p) = kQ,(p)~! = k(p?® + 20p + w7,
the adjustment parameter being the gain %, modulated by a
signal Ak - cos Qt, while to the input of the system is applied
the test action 6 (1) = 6 cos (wt + «).

Writing out the general expressions for the quantities

M*e?" =0, (jw) @, [j(+)] ™" (59)

it can readily be established that condition (58) for the system
considered is explicitly inobserved if w, is small (w,—>0), while
the frequencies £2 and w of the search and test signals coincide

"and exceed wy, since then

M+-cos<p+—->%(§22+2cx2)(92+a2)—1
M~ cosp™ - —Q*w}
M*singp* - —%a(ﬂz-l—az)"l

M sing” -»2aw; >
and the coefficient M~ cos ¢ becomes in (58) greater in modulus
than the coefficient M+ cos ™.

It is observed that since in this case the quantltles (59) are
independent of k, the error associated with the term E% in
eqns (45)—(49) proves equal to zero [this situation will occur
evry time that the adjustable parameters of filter ¢, appear
only in the numerator of the transfer function W, (p)].

Considering eqns (40), (41) and (28), it is noted that to
increase the capability of the self-adjusting circuit for operating
in non-quasi-stationary conditions one may use in the phase
discriminators ¢D; the reference voltages

m;, cos ;t +m;,sin Q;t ‘ (60)
which are phase shifted with respect the search modulation signal
uA; cos Qi (61)

In this case the processes of self-adjustment will proceed in
accordance with the equations

X==W,;(D)[E, (&* (1) my. cos Q1) + E, (&2 (1) my;sin Q;(1)]
(62)

where E; (€2 (£) m;, cos £,1) is determlned by formulae (46)—(49),
while

E, (g% (1) m,ssm.Qt)— A, m,S(E§3>+E§f>+E<3>) (63)

0

M
EP=50 % 6 1W (o)l My sin gy — My singl) (64
ik=0

Egiz)_ Z Bk |W(]wk)l (M i SIN @y — i: sin (Pi‘;;) (65)

M ,
. 00 (o, - _
Eg?): - Z 91% W (ja)I? q’a(x'. ) (M cos @y, — M, cos 9;)
k=0 i (66)

Here the necessary condition (58) for normal operation of
the self-adjusting circuits is replaced by the condition

Mit (mic Cos (plk Inls S]n (plk)
+ M, (m;, cos @y +mysin @) > O (67)

which may prove much more favourable given a suitable ch01ce
of the phase of the voltage (60); (i.e. of the quantities m;, and
m;,) the actual result of the undistorted forced process of self-
adjustment comes out in this case to be the minimization of the
quantity

M
Z 91% 4 (]wk)|2 [Mz: (m;ccos ‘Pit — M sin Q"i:)
k=0

+ M (m;c COs @y + Mg sin @) (68)

In choosing the phase of the reference voltage (60) one can
aim not only at increasing the coefficient (67) but also at the
same time decreasing the quantity

IM}; (m,, sin @ +my,cos p;y) A
+Mj, (mysin o +mycos o)l (69)

i.e. (see (62), (66) and (49)) the error associated with the term
E@. In practice, as a rule, it proves tedious to achieve an
accurately optimum phase-shift (e.g. in the sense of a minimum
ratio between the quantities (69) and (67) between the signals (60)
and (61), since by virtue of (29) this shift depends not only
on the drifting parameters of filter ¢, (a similar situation
arises™* also in extremal control systems), but also on the form
of the test signal 0 (¢). Nevertheless by using a priori information
on the operating conditions of the system, or by carrying out
a running analysis of the signal 0 (f) and the results of system
operation, in a number of cases one can evidently achieve an
improvement in the dynamic properties of the given self-adjusting
system relatively simply by using reference voltages of the form
in (60) that only approximate to the optimum. In order to
increase the stability of automatic phase-shift optimization
between voltages (60) and (61) one can correlate the search and
test signals in frequency [phase relations between the signals
6 (r) and uA,; cos ;¢ have no effect on the quantities (47)~(49),
(64)~66)].

The self-adjusting system, the phase 'of which use discrimina-
tors reference voltages of the general type given in (60) will
be denoted by System B.

§ 11. The equations of motion (45)-(49) and (62)—(66) were
derived under the assumption that the frequencies of the search
modulation and the harmonic components of the test signal ail
satisfy the conditions (44). If these conditions do not hold, then
the voltages Et (e2 (f) m;,cos ;1) and E; (2 (£) mys sinf;0),
together with the signals (47)-(49) and (64)-(66), will also
contain other components, which generally speaking will
introduce certain additional distortions into the self-adjustment
process. Equations (40) and (41) enable one effectively - to
calculate all these parasitic components of the control 31gnal in
the self-adjusting network.

For example, let only one of the conditions (44) be disturbed:
let the frequency of the pth harmonic of the test signal coincide
with the search frequency in the ith-self-adjusting channel,
i,e. wp = ;. According to (41), in this case the signal

E, (¢2 (f) my, cos ;1) will contain an additional term E),
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generated by the presence in e;; of harmonics with frequencies
wy + o, — 2,(fork =0,l=p,q=1iandk =p,[ =0,9 =1)
and wy + ©; — (Qs—}—!?q)(fork_:l:p,s:q:i):

E(4) =”'— mw E [606 | W (0) W (pr)l (ep0+ eop)

+%9; (W (jo, 2e1,p] cos Q;t
=m,-6900 [W(0)W (jw,)|cos 9,

o uA my, p[W(JCO ) x [a; (wp)cos29

—b;(w,)sin29,] (70)
where &, = # (»,), a; (wy) and b, (v,) are defined respectively
by eqns (36), (28) and (29) with w= w,,.

For the system considered in Example 3, the first term in
expression (10) is‘zero (since 6, = 0), while the second may be
calculated given the frequency characteristic of W, (jw). Even
in this actual example it is, on the whole, difficult to judge what
effect the use of a reference voltage of (60) type will have on the
additional error in question. One can evidently achieve a stable
reduction in this error or even its conversion into a useful
signal, provided one correlates the search and test signals not
only in frequency but also in phase, so as to limit unforeseen
variations in the angle 9,,.

1V. Calculation of Self-adjustment Operating Modes where the
Test Action is a Stationary Random Process ’

§ 12. It is assumed for simplicity that the filters W, (D) in Sys- .

tem A consist of elements which carry out the ideal averaging of
the quantity m,, €2 (¢) cos £2;¢ in time over the interval (— T, #):
t

&% (1) cos Qrdr

W,:(D) [¢* () m;, cos Qit]%f (71)
0

t—To

- and that the test signal 8 (¢) is a time-function whose ‘shortened’
spectrum (10) actual only slightly depends on the instant of ob-
servation ¢ and is located in the region of quite high frequencies:

07 (jo, =01 (jo), 0;(jw)=0 for w<w* (72)

0*=2Qy>Ty Y, Q=Q,_,>T,! (73)
(2,>9Q,_,, i=1,..,N)

Every actual filter W (jw) = Wl (jw) — W, (jw) has a finite

cut-off frequency w, (it is further considered that w* < w,),
so that in accordance with (19), (32), (34) and (71)~(73) the
equations for the process of self-adjustment of the gth para-
meter may be put into the form

W ' (2] - t
Xqﬁn—zf dwj dvTo_lf
o* Jvo t—T

G, (w,v,7)=D(w,v)[cos {(w—v)T+9,—9,}
+cos {(@+v)T+9,+9,}]cos Qr

where D (w, »), 9, and dv are defined by eqns (35), (36), (28)
and (29). The quantity G, (w, ¥, £} is a sum of harmonic com-
ponents with frequencies 2 equal to

G,(w,v,T)dt (74)
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0+viQ, otvi(Q+Q), (s=1,...,N) (75)
while the integral . ’
f G,(w,v,7)d7
t—To
is a weighted sum .of integrals of the type
t
J‘ cos (Qr+3)dz (76)
t—To

where £2 are the frequencies in (75) and ¢ are angles of the form
¥, + 9v and 9, & 9, + =/2. On rewriting the integral (76)

+To 1
J‘ cos[Q(§+t—~To>+9]df
J —=1To - 2

it is observed that in accordance with a known® integral repre-

)

of the 6 function and for large enough averaging time intervals T,
of the filter W, (D), the approximate equation

Jt cos(Qt+9)dr = cos[Q <t'~ % To> + 9] 6(Q)
’ =cos3:0(Q) (78)

is true; using this, eqn (74) can be readily got into the form

- in the form

.sentation

cos(Qr+9)dr=cos 3:6(Q) )

Xq¢T~TO_1>kq'n—1f "6,

*

N

+5 X Als(@ )+ +e ol (19)

whelre .
G, (@) =107 (jo) 0 {j (+Q)} W (joo) W {j (0 + 2}

- 'T_lcos(sm—gwﬂzq) (80)
& (@,9) =3 T~ 10 (joo) O (j9) W (jeo) W ()

[Vie (@, ) €08 (8, — 8,) = Vi (@, V) sin (9, —9,)] (81)
Vi) =) W el ™+ a5 W (o) &)
Viy(,v)=b; (@) |W (jo)| ™ + b, () [ W ()|

V=0t Qt 0, v=o+2-2 (83)

[the quantities a;(w), b; (w) and ¥, being defined by eqns (28),
(29) and (36) and 1 the memory of filter W ( ]w)—see § 3].
Consideringthefunction (5)as atypical realization of a station-
ary random process {0(#)} and performing averaging according
to achievements, one can go from eqns-(79)-(83) to equations in
the mean (as taken together) values X, of the adjustable para-
meters. If here the interval T is taken large enough, then in the
right-hand sides of these equations one may replace the quantities
T71| 67 (jw) 07 (j») | by characteristics like the mutual spectral
power densities'? of the process {6 (s)} and certain. random

processes obtained from {6 (1} by simple transformations that
do not infringe the stationary condition. -
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This paper does not deal with the more detailed analysis of
the general case, but gives the results of the calculation for the
quasi-stationary mode of self-adjustment, i.e. the mode in which

0*>20y (Q>Q,,i=1,...,N) (84)

with a test signal of white-noise type:

T~ 16 o) = lim T 107 Gl = {0 for <o’
T :

G,y for o>w

x (85)

Since eqns (30) and (31) are satisfied in quasi-stationary
modes, and furthermore &, == @ 150, (v > w*), one may
neglect the terms V;; (w, ») sin (4, — 9,) in (81), and so putting
b7 (jw) == 07{j(w + 22,9} and W (jo) == W{j(w + 22)), the
following equations for the self-adjustment process are arrived at:

wy . a (2P
Xqﬁng |W(]co)12dco+uAa f W (jw)|]? dw

1 0
+5 uZ A'a J W (jo)? dw:| (86)
l#q i
k3=T- Tolk“’* m,;+ Gy

The following conclusions are evident from (86):

(1) In the mode of operation (84), (85) studied, minimization
of the quantity

We
f W (jo)? do (87)
o
may be naturally considered the ideal result of the self-adjust-
ment process.

(2) The control signal for the gth self-adjusting network
contains derivatives of the quantity (87) being minimized, not
only w.r.t. X, but also w.r.t. all the other adjustable parameters
X, so that one has not got a pure gradient system of extremal
control.

(3) The equilibrium condition X =0(qg ..., N) for the
system (86) is characterized for A; = A ( ., N) by the
relations

o we ' We
#A(N+1)af W (jo)l? dw='—J W (jo)I*do  (88)
idJ o* o*
(i=1,...,N)

from which it can be seen that the more pronounced the extremal
nature of the dependence of quantity (87) on the parameters X,

(%) £q(t)

o | W o | 2@ I

L ey bl o]

| |m,Ax,(t) l

S%) |
pax () pAx (O] x,  [we )] . 9, | |

| D '
Lo —d
Wan(D)
XN ¢D LA
]mNAxN(t)

Figure 1 Figure 2 —

and the less essentially attainable the minimum of this quantity,
the closer will this condition be to the ideal result of self-adjust-
ment.

(4) If quite large differences arise rapidly between the
frequency characteristics W; (jw) and W, (jw), the non-negative
term (87) on the right-hand side of eqn (86) will increase so
much that the operation of the self-adjusting network will be

reduced merely to increasing the parameter X (x > 0), and
this may lead to the system’s losing its requlrcd extremal
condition.

Finally it is noted that the equations given by Krasovskiy?
for quasi-stationary self-adjustment with a white-noise test
signal contain only terms analogous to the second term in the
right-hand side of equation (86).

The author expresses his gratitude to Ye. A. Barbashin and
1. N. Pechorina for their discussion of this paper.
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'Optimal Control of Systems with Distributed Parameters
| A.G. BUTKOVSKIY

In many engineering applications the need arises for control of
systems with parameters that are distributed in space. A wide
class of industrial and non-industrial processes falls within this
category: production flow processes, heating of metal in metho-
dical or straight-through furnaces before rolling or during heat-
treatment, establishment of given temperature distributions in
‘thick’ ingots, growing of monocrystals, drying and calcining of
powdered materials, sintering, distillation, etc., right through’ to
the control of the weather.

The processes in such systems are normally described by
partial differential equatlons integral equations, integro-
differential equations, etc. :

The problem of obtaining the best operating conditions for
the installation (the highest productivity, minimum expenditure
of raw material and energy, etc.) under given additional con-
straints has required the development of an appropriate mathe-
matical apparatus capable of determining the optimal control
actions for the plant.

Pontryagin’s maximum principle and Bellman’s dynamic
programming method have been the most interesting results in
this direction for systems with lumped parameters.

A wide class of systems with distributed parameters is
described by a non-linear integral equation of the following
form:

™~

Q)= K [P,S,Q(5), U(S)]dS Y
Here the matrix .
'@
QP)=||: =12°®)l @
11e" (P) '

describes the condition of the controlled system with distributed
parameters, while the matrix

U'(p)

=[|U(P)] 3)
U™ (P)
describes the control actions on the system. Here and in the
following, the index i”will refer to a row number and j to a
column number in a matrix. The point P belongs to a certain

fixed m dimensional region D in Euclidean space.
The components of the single-column matrix

Kl(P S,0,U)

=ik e o) @)
K"(PSQ U)

U(p)=

K(P S 0,0)=

belong to class L, and have continuous partial derivatives

w.r.t. the components of the matrix Q.

It will be assumed that the function U (P) is piecewise dis-
continuous, its values being chosen from a certain fixed permis-
sible set £2. Controls U (P) having this property will be called
permissible.

Further, from the set of conditions Q (P) and controls U (P),
related by integral eqn (1), let ¢ functionals be determined,
having a continuous gradient (weak Gato differential).

i=0,1,...,1 A (5)

r=rpom),.
I'=I'[Q(P),U(P)]=9'(z), i=l+1,..,q (6)
where N
2°] F°[S,Q(S), U(S)] d_S’
-
z | F" [S,0(8), U(S)] dSW
= F [S,0(8), U(s)] dS? (M

The functlonfD’(z),z =[+1,..., qandFZ(S,Q, U),i=0,1...k,
are continuous and have continuous partial derivatives w.r.t.
the components of the matrices z and Q respectively.

The optimal control problem is formulated in the following
manner.

It is required to find a permissible control U (P) such that
by virtue of equation (1)

I'=0, i=0,1,...,p—1,p+1,...,q ®)
while the functional I? assumes its smallest value. Here p is
a fixed index, 0 < p < q.

The following rectangular matrices are introduced

00 [oaf] . o
el O i=0,1,...,1; j=0,1,...k 9)

_ e -
0,1,....k; j=1,2,..., 10
0 fsgl) f "o
gradI=|lgrad;I'|; i=I+1,....,q; j=1,2,...,n (11)

where grad ;I denotes the jth component of the vector grad I
w.r.t. the coordinate Q.
The following theorem® can be used as the basis of a solution

. of the problem formulated above on the optimum control of a

plant with distributed parameters.

Theorem. Let U = U (S) be a permissible control such that
by virtue of eqn (1) the conditions (8) are satisfied and the
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matrix function M(P,R) = |M; P, B)|, ij=1,2,...,n
satisfies the integral equation [linear in M (P, R)]

M(P, R)+%K[P, R,Q(R), UR)]
- J M, s>a%1< [S,R, Q(R), U (R)] S

=f O K[P,5,0(5). UM S.R)AS - (12)
»30 |

Then for this control, U (S), to be optimal there must exist
one-row numerical matrices -

(13)

of which at least one is not null, and also ¢, <0, such that for
almost all fixed values of the argument S € D the function

7(S,U)=a[grad I {Q(P)},K{P,S,0Q(S), U}

a=”00’c13"'9c1” and’ b:”cl+13"'5cq“

- f M(P,R)K {R,S,0(S), U}dR]
D .

Ll

+b - U F{P,Q(P),U(P)} dP]
0z D

[%F (P,0(P), U(P)}K (P,S,0(S), U}

—J M(P.R)K (R,S,0(S), U} dR]
D

+ b_ﬁazq)[f F {P,Q(P), U (P)} dP]'F {S,0(S), U}
D
' ' ‘ (14)

of the variable Ue Q attains a maximum, i.e. for almost all
S € D the following relation holds:

(15)
(16)

7 (S, U)=H(S)
where - ' :
H(S)=supx(S,U)

uef

As an example of the application of this theorem, consider

the important practical problem of the heating of a massive .

body in a furnace. Let the temperature distribution along the
x axis, 0 < x < L, at any instant ¢, 0 < ¢ < T, be described by
the function Q = Q (x, ). Here the temperature U (f) of the
heating medium, which in this case is the controlling agent, is
a function constrained by the conditions

A< U @)<A4,, an

0<t<T

i.e. in this case the set £ is the interval [A4;, 4,].

Tt is known that the distribution function Q (x, ?), if initially
zero, is related to the control U (f) by the following integral
equation

In the heating of a body there is usually given a temperature
distribution @* = Q*(x) which is required to be attained in the
minimum time. However, if the equation

Q(x,)=0%(x) (19

for any permissible control is not satisfied for any fixed ¢,
0 <t < T, then the problem becomes that of determining a
permissible control u (), 0 <t < T, such that the functional

L .

1°=J‘ [Q*(x)—Q(x, T)]"dx (20)
[¢]

attains its minimum. Here v is a positive even integer.

Since the integrand in eqn (18) is independent of the con-
trolled function Q (x, 1), then according to eqn (12) the
function M (¢,c) = 0 for all ¢ and 7 in the interval [0, T].

1t follows that the function 7 (z, U) takes the form

L
7 (z, U)= co f .%[Q*(x)—Q]"K(x,T, 7 Udx

==7¢ UJL[_Q* ()=0 0, DI K(x, T,7)dx
' 2D

Since in this case by the conditions of the theorem c® < 0,
50 — pCq > 0, and hence the maximum of = (7, U) w.r.t. U,
with 4, < U < A,, is reached when

A, +4
U@==5" (22)
A,— Ay o % ' y—1
W sgnf0 [0* (-0, DY 'K (x, To)dx

If we substitute expression (18) for Q (x, f) in eqn (22), then
we obtain an integral equation for determining the optimum-®
control action U (7).

For example, ify = 2, 4; = — 1, A, = 1, then the optimum
control action satisfies the following integral equation:

L

U(r) =,sg'nj

0

[Q*(x)—rx(x; T,7) U(t)dr}K(x, T,7)dx
0
C(23)

Opening the brackets and altering the order of integration,
one finally gets

. T
U(t)=sgn [B ) —j N, 0 U(©) dﬂ] (24)
0
where N (7, 0) is the symmetrical nucleps
N(r,B):J‘LK(x,T,r)K(x,T,B)dx 295)
B(t):JLQ* (x)K(x, T,7)dx (26)
) 0 .

Methods of approximating partial differential equations by

't
Q(x, t)=f K(x,t,7) U(r)de (18) finite difference equations can be applied successfully to the
0 approximate solution of problems of the optimal control of
where K (x, ¢, 7) is a known weighting function. systems with distributed parameters. This has the advantage
513/2
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that results obtained for lumped-parameter optimal systems
can be used. .
As an example, consider the optimal control of a system
described by the following equation
00  8%Q

a

%% 92=2(0,0=x<85,0<1<T  (27)

with these initial and boundary conditions
Q(x,0)=0q(x) : (28)

00 BTV

o = — t = =0 29

5, =~ [U0-00.0], & 29)
Also let the function Q* = Q*(x) Be given. The problem may
be formulated in double form:

(@) To find a permissible control U(Y), 0 <t < T, UeQ
(£21is the set of permissible control values), such that the equation

Q(x, T)=Q*(x), 0<x<S (30)

is satisfied for a minimal time 7.

However, in many cases eqn (30) cannot be accurately
satisfied for any T. It then makes sense to formulate the pro-
blem as follows:

(b) To find a permissible control U (f), Ue 2,0 <+t < T,
where T is a fixed time, such that the functional

=L [0*(x)-Q(x, T)]"dx (1)

which characterizes the measure of deviation of the actual
distribution from the given one (y a positive even integer), should
reach a minimum.

Using the straight-line method, problems (a) and (b) may be
reduced to an ordinary problem of optimum control for systems
with lumped parameters. _

In fact, splitting the interval [0, S] on the x axis into n equal
parts by the points xo = 0, x; =, ..., x, = S, where s = S/n,
and replacing the second partial derivative of Q (x, 7) w.r.t. x
in eqn (27) by the second difference ratio, we obtain a finite
system of order (n + 1) of ordinary linear differential equations
for the functions g; (), i = 0,1, ..., n

‘ qo=—(0+P)go+og,+BU
éi=a(qi—1_2qi+qi+1), i=1,2,...,n-1 (32)

q.n =a(qn—1_qn)

with the initial condition

q:(0)=Q,(is), #=0,1,...,n (33)
and the final condition
qi(T)=Q*(is), i=0,1,...,n (34

Here § and o are constant coefficients which can be expressed .

in terms of a and «. .
In problem (a) the funqtional that has to be minimized is the
time 7. This problem can be solved by using the maximum

513/3

principle. Gamktelidze® has shown that its solution always
exists and is unique.
In problem (b) the functional to be minimized is

- 3 [a.(1)-0" G G9)

In certain cases it is required to determine the optimum
variation law for a control action which is itself distributed in
space, constraints being placed on it in time and also in spatial
coordinates.

For example, it is sometimes material that too great spatial
variations cannot be allowed in certain physical quantities such
as temperature, pressure, electric field strength, etc.

We shall consider as an illustration the heat-exchange
equation

b(y,t)atQ(y,t)+b(y,t)v(t)—Q(y,t)+Q(y,t) Uy, 1)
(36)
for the exchange between a stationary heating medium with
temperature U=U(y, 1), 0<y <L, 0<¢r<T (y being a
spatial coordinate and ¢ the time), and a material moving at

-velocity v = v (f) > 0 in the positive sense along the y axis and

becoming heated in the process of moving over the interval
0 <y < L. The state of heating of the material is described by
the function Q (y, 7). The initial and bondary conditions take
the form

2(3,0=00(»), 2(0,n=0 (37

In this case a permissible control is considered to be a
function U= U, 1), 0<y <L, 0<t<T, that satisfies
the conditions

A <U((y, <A, (38)
A, <—E-)- U(y,t)<A, 39)

where 4,, Ay, A, and A, are given constants.

Physically these constraints correspond to the fact that in
feed-through heating installations one cannot allow too great
amplitudes of temperature fluctuation in the heating medium,
or excessive temperature drop over the length of the furnace.

In this case one has to determine the control U = U O, 1),
subject to conditions (38) and (39), such that, in spite of all
possible disturbances of the heating process caused by variations
in the velocity v () and by variations in the thermal parameters
b (y, 1) of the process, the deviation of the temperature of the
material leaving the furnace from a certain given temperature Q*
should be on the average a minimum, i.e. one has to minimize
the functional

r :
=j [0* -0 (L, ] dr (40)

where y is a positive even 1nteger

In order to reduce the partial differential equatlons to
difference differential equations, split up the interval [0,L] on
the y axis into n equal parts by the points Yo=0,y =1,

= L, where | = L/n. Replacing the partial derivative w.r. t y
1n eqn (36) by the difference ratio, we obtain a system of order

of ordmary lmear differential equations in the functions g, o,
i=12,.
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bGLD G+ b 0O [a-ai- ]+ 4=V (@4D)

with go () = 0,0 < ¢ < T and ¢; (0) = Q, (il).
Equation (41) may be rewritten in the form

qz=ﬁqi—1+a.iqi+Uia ii;-laz’“-:n (42)

where U; == U;(t) = U (il, t),'while the coefficients f and «;
can be expressed exp11c1tly in terms of the functions v (¢) and
bl 1.

According to condmons (38) and (39). the functlon U; (t),
0 <t < T, is subject to the constramts

A <U (D<A, i=1,2,...,n (43)
A <UL ()-U; (<A, i=1,2,...,n—1 (44)

The functional (40) must now be replaced by this one:

=L[¢—%mPM1 45)

It can now already be seen that the maximum principle may

be used for determining the optimum control actions U, (¥),

i=1,2,...,n 0 <t <T In this case the permissible region £
from which the values of the control vector U (1) = U, (o), ...,
U, (t) may be chosen is a closed convex polyhedron in » dimen-
sional space, described by eqns (43) and (44).

Observe that the function H (if;, U;) which has to be maxim-
ized according to the maximum principle in this case for each
fixed ¢, 0 < ¢ < T, takes the linear form in the U;

Hu U= 3 iU, )

Hence the problem of determining the optimum control
actions U; (1), i =1,2,...,n, at any instant 7, 0 <t < T,
reduces to the linear programming problem of maximizing the
function H while satisfying conditions (43) and (44).

Thus it is that besides the' accurate and quite general
methods of solving optimal control problems which have a wide

“application in engineering, great significance is also attached

to approximate methods of solving these problems, based on
approximating partial differential equations by ordinary differ-

_ ential equations.
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Programme Control and the Theory of Optimal Systems
YE. A. BARBASHIN

Introduction
Consideration is given to the system of differential equations

%=f(xa’1>t)+u(09%t) (1)

where x (¢) is an n-dimensional vector, y (r) an m-dimensional
vector, 7 (£) a certain (in general random) vector function, and ¢
a constant vector. It is assumed that a certain trajectory x = ()
in pahse space is given for 0 < ¢ < T (0 < T < ). Assuming
that certain information is received on the variation of 7 (),
it is required to choose a vector ¢ (problem A), or a vector
function y (f) (problem B), or a vector ¢ and a function y ()
(problem C), such that some solution of the system precisely
or approximately realizes a motion along the trajectory x i/ (¢).
The problem formulated in this manner is a problem of pro-
gramme control.

Let O in Figure 1 be the plant under control, whose object
is to achieve a certain given mode of operation x =y (£). To
achieve this, a unit Y is introduced that develops a control .
In forming the control, use is made of information on the
operating conditions ¥ (#) to be set up and also on external
influences 7 (¢); this information may be received in distorted
form for many reasons, e.g. delays and inertia in the trans-
mission line C, measurement errors, random errors, etc.

If the problem had an accurate solution, then the required
control would be determined by the relation

u(e,y (@, )=y'()—f W (1),n(1),7) 2

Hawever, in a number of cases the system (2) cannot be solved for
the control vector ¢ or the control function y (¢). This may be
due to the choice of an inadequate number of dimensions for the
vectors ¢ and y (f), or the presence of incomplete or distorted
information on the external influences 7 (f). It may also happen
that it is possible only to choose the control from some narrowly
defined class of functions, such as piecewise-continuous func-
tions, trigono-metrical polynomials, functions whose modulus
has a constant limit, etc.

Thus the impossibility of solving system (2) accurately may
lead to the statement of a number of problems of variational
type. Bellman! considered such a problem when he used the
dynamic programming technique to derive a control function
¥ (9 so as to make the maximum deviation of the system 1)
trajectory from the required one a minimum.

One can state the problem of finding control functions that
make a certain integral criterion of control quality a minimum.
These problems may be solved by making use of the maximum
principle of Pontryagin® 3, of classical variational principles?,
and of the principle of dynamic programming5.

One can state the problem of ininimizing the error with
which the given trajectory satisfies system (1). If it is a question
of a minimum mean-square error, then this statement of the
problem leads to the simplest problems in the theory of mean-
square approximations®.

Finally, one can renounce all attempts to minimize the
deviation, and seek a solution that simply gives a sufficiently
accurate approximation. Thus, for example, Roytenberg? seeks
a control function from the class of piecewise-continuous
functions to give coincidence with the system (1) trajectory
at a finite number of points on it.

It is observed that a distinction should be made between
two essentially different cases in solving the problem of realizing
the-given process. In the first case the initial points of the actual
and the required trajectories coincide; in the second the initial
condition of the actual process may have any value. Normally
in the second case the control is formed not only according to
the magnitude of the disturbance but also according to the
deviation ‘of the controlled quantity from that required, i.e. in
this case the ¢ontrol system will include feedback.

Programme Control and Optimal Systems

1t should be noted that if the optimum principle is satisfied
in one form or another in solving the problem of realizing a
motion along a given trajectory, then in a number of cases it -
becomes possible to introduce feedback into the control system,
which permits one to automatically correct the motion along
that trajectory. This fact proves conclusively the advantage of
systems designed on the basis of one or other optimum criterion.
However, a number of difficulties are met in applying optimum
criteria to the design of programme control systems and tracking
systems. First of all, they often lead to designs requiring heavy
computation or to designs that are technically difficult or
impossible to execute. In this case, one must give up trying to
satisfy the optimum principle, and restrict oneself to an approx-
imate solution of the problem, with the aim of getting the best
quality of fit within the bounds of technical possibility.

Usually in applying the optimum principle one needs a
knowledge of the process to be realized over its whole duration.
But it may happen that only certain statistical characteristics of
the programmed process are known, or even that nothing is
known about its future. In the latter case the optimal control
theory is powerless, and the only reasonable approach is that
of minimzing the deviation of the velocity vector for the current
point from the tangent vector to a certain curve of pursuit from
a given class, perhaps determined by a system of differential
equations. Thus in this case the problem of minimizing the
deviation of the given process from that required is replaced by
the problem of minimizing the difference between two vector )
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fields, one of which determines the actual motion of the point
and the other the required motion along a curve of pursuit.
It should be noted that an analogous result is obtained if the
control is chosen to give a maximum rate of decrease of a certain
Liapunov function set up for the perturbed-motion system.
The above approach, by introducing feedback, enables the
deviation of the actual process to be rapidly reduced from that
required, without the future course of the latter being known.
It is shown below that an analogous result can be obtained by
increasing the stability of the basic control circuit.

If the motion to be realized is known over the whole of its
duration, then the following is the most natural method of
solving the programme control problem. In the first stage a

control that gives the most rapid means of reaching the given’

trajectory is sought, and in the second the control that achieves
motion along that trajectory® is found.

The mathematical theory of optimal control that exists at
present is basically a theory of optimal stabilization. This means
that this theory permits, in the simplest cases, by the introduc-
tions of relay devices into the control system, an increase in the
system’s closed-circuit stability at zero input signal. In other
words, the quality of the system’s stability is heightened, using
optimum criteria, irrespective of the nature and type of input

actions that are processed. Clearly such a system will deal with-

input actions in various manners according to their structure.
Below is given an example of a servo-system that reacts well
enough to step-function inputs, and consequently also to any
slowly varying inputs. However, in order to obtain this good
qualiy tin the .system, the requirement for optimum closed-
circuit stability had to be abandoned. :

Example

The control system having the block diagram shown in
Figure 2 is considered. Here f is the input signal, x the output
signal, K the amplifier unit, 4 the unit forming the gain x, which
in general is variable. The problem is to find the optimum law
of variation, given the constraint | k¥ | < x,, and the condition
that the error & decreases in some sense in the fastest way.
Since in this case the time for complete elimination of the error
is infinite from a mathematical point of view, the time for the
error to fall within a given region surrounding the origin has to
be discussed. Rapid action of this type will be called relative
rapid action in distinction to the normal type.

The case where-the plant under control is specified by an
equation of the second order is considered, i.e. where L (p) =
p? + ap + b. In this case the differential equation being examined
takes the form ’

i+aé+be=f+af+bf—xe

First consider the case where the external input f is absent, and
find the law of variation of x that gives relative rapid action.
According to the results of Yemelyanov and Fedotova®, the
gain should be determined by the formula

©)

Now consider the case where f is a step function, i.e. let
f=0for ¢t < 0and f = f; for + > 0, assuming that the magnit-
ude f, of the step cannot be measured. Reserving the freedom
to choose T, take the previous switching law given by eqn (4).
Clearly if x = k,, eqn (3) after the step has passed will take the
form

§t+aé+(b+xg)(e—e,)=0 (6)
where &, = bfy/(b + K,).
Correspondingly, for ¥ = — Kk, one gets '
i+aé+(b—xky)(e—e)=0 ©)

where & = bfy/(b — Ky). .

Assuming that x, is large enough a qualitative plot in the
phase plane can be drawn for each of these equations without
difficulty. Equation (6) in the phase plane corresponds to a
family of spirals converging to a focus-type special point (&, 0).
Equation (7) in the phase plane corresponds to a family of
integral curves of hyperbolic type, with a ‘saddle’-type special
point (g, 0) through which pass two integral straight lines whose
gradients are the roots of eqn (5).

Assuming now that the switching law is given by eqn (4),
the phase diagram shown in Figure 3 is obtained, provided only
that T4, < — 1, where /; is the negative root of eqn (5) is
assumed. If the latter inequality is not satisfied, an obviously
unsatisfactory result is arrived at, since the switching line ()
given by the equation T¢ + ¢ = 0 will be cut by the integral
curves over the whole of its length with ¢ < 0, while in our
case the straight line T is a sliding line everywhere except
over the segment EF, where E and F are the points of contact
with the integral curves corresponding to eqns (6) and (7). Thus
the switching line resulting from the relevant optimum criteria
will have been deliberately abandoned. If the representative
point M falls to the left of the line 7, then it will slide along
this line as far as F, follow a curve of hyperbolic type as
far as the line ¢ = 0, then a spiral as far as the right-hand part
of line T, where it will again start to slide towards E. On arriving
at E it will approach the point (&,, 0) along a spiral if @ > 0,
while if @ < 0 it will start to move along a cycle consisting of the
segment GE of line T and the segment EHG of the spiral. Thus
any point in the plane arrives, eventually, either within a
sufficiently small region about the point (&5, 0) or at-a limiting
cycle corresponding to some self-oscillatory mode. It should be
observed that the amplitude of the resulting self-oscillations is
of the same order as ¢, = bfy/(b 4 K,), and consequently can
be made as small as required by increasing .

It should be noted that by increasing T the length of the
segment over which it cuts the integral curves is decreased, but
the speed of sliding along this line is also lessened since, as can
readily be seen, the sliding law is given by the relation & = &, exp
(— #/T). Thus proceeding from various quality criteria and
combining speculation with experiment a reasonable value for
the time constant 7' can be selected.

Toge ther with R. M. Yeydinov and I. N. Pechering the
author has been carrying out analogous investigations for a
third-order system. Here the main difficulty lies in the problem
of synthesizing a corresponding optima lIsystem.

k=kosgne(Tp+1)e )
. . . Connection with the Accumulated Disturbance Problem
where T-1 is the negative root of the equation ]
Returning now to the problem formulated in the first
A tal+b—i,=0 (5) paragraph; as far as the approximation to the final section of
515/2
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the trajectory is concerned, our problem is directly related to
that of Bulgakovl® on the accumulation of disturbances in a
dynamic system.

Introducing the substitution z = x — ¥ (¢) into the system
of eqn (1), we transform it into the form

dz

=L Em ey @@, @®)

wh.rc»
Z(z.n, =) +Y (), D~ WiD,n), 1)
(e, ),y @@, )=f (W D.n. =Y O+ule,y,0=r()

System (8) is a system of equations for perturbed motion,
the function r (f) determines according to eqn (2) the approxima-
tion error of the programming or control functions, and the
deviation of the solution z (¢) of system (8) from zero coincides
with the deviation of the solution x (f) of system (1) from the
given function ¥/ (¢).

If system (8) is linear, then for z(0) =0, 0< < T < ®
we have z (f).= Ar (1), where A4 is a linear-bounded operator
transforming the function r (¢) into the functions z (¢). If || 4] is
the norm of the operator, then ||z (f)]| < || 4]l |[r (9)|| is obtained.
The latter relation is also the most general expression of the
solution to the problem of disturbance accumulation. By taking
various norms for r () and z (/) and computing [ 4|, the actual
inequalities that solve this problem’ 2 are obtained.

Connection with the Theory of Approximations

If as an optimum criterion that of the minimum error r (f)
(in any dimension)is taken, then the problem of realizing the given
trajectory reduces to a problem in the theory of approximations.
This problem is most effectively solved in the case where r (¢)
depends linearly on the programming parameters and functions,
and where we require a minimum of the mean-square approx-
imation error. In this case the elementary rules of the theory
of mean-square approximations are used for computing the
control. It should be observed that here two essentially different
cases are met. In the first case, by selecting the programming
parameters from a sufficiently large number of them the approx-
imation error can be made as small as required, i.e. realizing the
given motion as accurately as necessary. In the second case the
error of approximation cannot be made less than a certain value.
Here it is worth while to state the problem of simultaneously
choosing optimal values for the parameters and optimal pro-
gramming functions. The success of such a choice depends,
roughly speaking, on -how well the given trajectory fits into
linear subspaces in the various dimensions!!.

Trajectory Realization and Stability Theory

If it is wished approximately to realize motion along a given
trajectory for the whole interval 0 < ¢ < oo, certain difficulties
arise. It can readily be seen that such an approximate realization
is possible if the zero solution of the system

d .
T=2@mn0 ©)
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is stable in relation to continuously acting 'disturbances that
are limited relative to the dimension in which the approximation
error r (f) is evaluated. There exist!3 stability criteria related to
continuously acting disturbances limited in modulus or in
mean value. Stability criteria can easily be deduced for use
with continuously acting disturbances limited in - their mean
square, which are of most interest in our problem. However, in
solving the problem it was required to find convenient evalu-
ations of continuously acting perturbations that were simulta-
neously evaluations of approximation errors.

Such evaluations'* were found and it turned out to be best
to make them in the dimension of space M with norm

(k+1) T
I (DI*= sup J [r(1)]* dt
0<.:<o0 o kT

where |r (f)| denotes the length of the vector r (f). Massera was
the first'® to point out the important role of the space M in
stability theory.

Dwelling further on a question related to stability theory,
the operating mode () is called stable in relation to the
system % = X (x, ) if the zero solution of the system

i=X0E+Y®,0-XW(®),1)

is asymptotically stable. From the preceding argument it is clear
that only stable operating modes can claim to give a good
approximation. Unfortunately few criteria for operating mode
stability have so far been derived in relation to this system.
Clearly if the basic system is linear and asymptotically stable,
then any operating mode will be stable relative to it. The same
property is possessed by the systems considered by Krasovskiy
in his paperl® (theorem 3.1). These systems are determ nud by
the fact that for each of them a constant symmetrical .natrix 4
can be defined having positive eigenvalues and such that the
symmetrized matrix

' X ox\ | fox\ ox,
.[B~"]=[<A a),-,f(“‘ a‘)J (a?,)ﬁ;

has ncgative eigenvalues g, satisfying the inequality u; < — d,
where d > 0 at all points of the space — o0 < x; < 0,0 <1< 0,

The interesting result obtained by Letov!? is also noted,
concerning non-linear control systems with parameters that
vary only slightly. He has proved for a large class of systems of
great importance in control engineering that the stability of a
given operating mode implies the stability of all sufficiently clcse
modes. In this case the closeness of thz modes is assessed by the
magnitude of the modulus of the difference between the pro-
gramming functions. '

Probably further results in this direction can be obtained
on the basis of both existing and new criteria for asymptotic
stability of linear systems with variable coefficients. It can easily
be verified that in the unidimensional case Krasovskiy’s criterion

.is a necessary and sufficient condition for the stability of any

mode. It would be interesting to know to what extent this
criterion is necessary for systems of a higher order.
Realization of Periodic Motions

Now let the right-hand side of the system (1) and also the
function (1) be periodic in ¢ with period T. Assuming that the
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zero solution of system (9) is asymptotically stable to a first
approximation, we can again formulate the conditions for a
given motion to be realizable with the required accuracy. But in
this case these conditions can be set more simply, since here
the dimension in space M is given by

T .
Ilr(t)ll2=L |r ())* dt

Furthermore it can be shown that even in the presence of an
approximation error different from zero there exists an asymp-
totically stable periodic motion lying within an ¢ neighbourhood
of the given periodic motion.

It should be observed that the results obtained can be ex-
tended without difficulty to the case where the motion to be
realized is discontinuous, or more accurately has discontinuities
of the first sort'®. In this case the programming functions will
appear as the sums of ordinary functions and linear combi-
nations of d functions.

Programme Control of Random Processes

Up to now attention has not been directed to the external
influence or, more precisely, disturbance # (). Normally # (¢)
is a random function, and so the actual mode of operation will
be a random process. Naturally in this event the programmed
mode also is random. The extension of the preceding results to
the case of stochastic differential equations presents no difficult-

_ies, provided the following points are borne in mind. A random
quantity, as is known, may be determined as a measurable

function defined in some choice space ¢ (or space of elementary
events). It is easy to see that the space E can be constructed in
such a way that it is the choice space for all random functions
7 (£), & (f) and x (¢) occurring in the equation

dx

3= Gatn(@)+ut () (10

where & () is the distortion of the disturbance 7 (¢) (see Figure I).

If a norm is defined by any means in the linear space of
random quantities (as in the space of measurable functions
defined in the choice space f), then differential eqn (10) is
transformed into a differential equation given in the linear
normalized space R, whose elements are random vectors. Here
one should take as initial vectors in the solution of Cauchy’s
problem not only deterministic vectors but also any other random
vectors from R, while the derivative and integral of a random
function w.r.t. ¢t should be understood as the derivative and
integral in Bochner’s sense. In particular, if as the square of the
norm of a random vector the mathematical expectation of the
square of the length of the vector is taken, then the concept of
the derivative and integral of a random function coincides with
the generally accepted one. .

It should be observed that the theory of differential equations
in a Banach space is well developed at the present day. By
making use of this theory, one can readily formulate conditions
for the existence, uniqueness and extensibility of solutions!®,
and consider questions of stability!® or questions of the ex-
istence and research of periodic motions?®, All this enables the
setting up of a completely analogous statement of the problem
of realizing random processes and to obtain results identical
to those presented above?.

The reduction or elimination of the effect of disturbance by
continuous tracking of it has found wide application in the
theory of automatic control, mainly in the theory of composite
control systems. This theoryuses the so-called invariance principle
developed by Academicians Luzin and Kulebakin, which has
served as the starting point for a large number of papers on
automatic control theory that have important applications.

Realization of Processes by means of Systems with Many-valued
Characteristics

Barbashin and Alimov?? have shown how to reduce systems
of differential equations with relay-type hysteresis, and in
general many-valued characteristics to a differential equation
in a normalized linear space. Thus in this case also all the
preceding results can be obtained by the same method as was
indicated for the programming of random processes.

-

Conclusions

It has been seen in this paper that the accuracy of approxima-
tion to the trajectory depends on the degree of stability of the
zero solution of the system (10). The better this stability is,
as judged by any of the existing quality criteria, the smaller
effect will approximation errors have on the deviation of the
trajectory from the given one. Thus the problem of improving
the response of programme control turns on the problem of
increasing the stability of motion. Here, in particular, the
theory of programme control again comes into contact with the
theory of optimal control.
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~On the Searching of Extrema of Functions
in Automatic Control Systems

A. A. VORONOYV and M. B. IGNATIJEV

This paper considers a distinctive approach to the problem of syn-
thesis of local systems for automatic search of extrema of func-
tions of many variables. The principle involved in construction
of systems which react upon the partial derivatives of the sought
function by the coordinates of the controlling devices is not new.

In the search of the extremum of the function of a single
variable the problem is sufficiently definite; however, when the
function depends upon several variables, the definiteness is lost
and the solution of the problem becomes multi-valued. The
function of a single variable y = f(x) is represented by a plane
curve, and if at a certain point x, one determines dy/dx, then
it is necessary to vary x in order to approach the required
extremum. A function of two variables may be represented by
a surface y = f(x,, x,). In this case, the path followed in passing
from a given point to the point of extremum, while remaining
on the surface, is not a singular one, but one of infinite multitude.

In 1959 Krasovskiy considered systems which searched the -

path to the extremum by the gradient method?. He also showed
that depending upon the form of the surface y = f(x;, Xy, ..., X,)
the gradient method may be varied by making the shift of the

controlling device x; dependent on the derivative f; = 0f/0x,;.

and also upon the derivatives of the function f with respect to
other coordinates.

Approximately at the same time the Electro-Mechanical
Institute of Leningrad considered the problem of simulating
functions of many variables by means of digital differential
analysers. This problem arose in connection with the construc-
tion of systems of programme control of metal cutting machines,
first for simulating plane curves and then for curves lying on
a given surface. The method which was utilized in this instance
made it possible to indicate the general methods of synthesis
with DDA (digital differential analyser) intended for simulating
various forms of multidimensional surfaces, and also to indicate
the quite general method of constructing systems of searching
of extrema of functions of many variables, based on the principle
of measurement of partial derivatives. The gradient method is
obtained in this instance as a special case. This method also
permits the searching of extrema, taking into account the bound-
aries at the intersection of multidimensional surfaces.

Before proceeding to the treatment of this method, it is
necessary to consider the question of the structure of differential
equations whose solution lies at the given intersection of
multidimensional surfaces® 5.

The Structure of Differential Equations whose Solution Lies at the
Intersection of Multidimensional Surfaces

The problem of finding differential equations whose solution
is a given function is not a single-valued problem and its

rational -solution depends upon the means which are used for
composing the sought system of equations, and upon which
properties of the functions are utilized in the solution.

Indeed, in mathematical analysis there are given proofs of
theorems on the singularity of solution of differential equations
under given conditions; however, it is obvious that the converse
problem has a multitude of solutions, that is, it is possible to
find a multitude of differential equations whose singular solution
will be the given function. - _

At the present time there exist two approaches for solving
differential equations. The first approach permits the construc-
tion of an equation by introducing a parameter, and in the
following this approach is called the parametric method of
synthesis. The second approach of developing the method of
synthesis is one which converts an equation into an identity,
which equation is obtained by differentiating the output function
with respect to the parameter.

Let there be a function

F(x]’xb"-axn)=0 (1)

and an argument @. In the parametric method of synthesis one
finds first of all the parametric equations
x;=x;(p), i=1,2,...,n 2

which satisfy (1), and from these equations differential equations
are found whose solution will be given by functions (2). In this

case it is possible to find the differential equations by the method.

of K (D) transform proposed by Kulebakin.

By the second method* 3 the parametric expression (2) is
not sought, but the differential equations whose solutions
satisfy (1) are immediately determined. As numerous observa-
tions indicate, the structures synthésized by the second method
are considerably simpler than the structures synthesized by the
first one.

The basis of this method of analytical construction of a differ-

ential analyser is the following lemma: having the function (1).

of n variables which has.a derivative in the given range of the
variables, then in order that the solution of differential equations

dx; .

d—@’: is i=1,2,...,n 3)
under initial conditions satisfying (1) may transform eqn (1) into
an identity, it is necessary and sufficient that the eqns (3) trans-
form into an identity eqn (4):

o OF dx;
Si0x; do
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This lemma is then utilized for searching functions f;:
they are sought so that they may transform egn (4) into an
identity. This problem has a multitude of solutions, and this is
what determines the fact that the problem of synthesis is not
a single-valued one. No matter how we may determine £,
they will in all cases be some functions of partial derivatives
0F/0x,;. In the operation the functions f; are sought out as
linear functions of partial derivatives under the assumption that
this is the simplest case.

As is shown? ® the differential eqns (3) whose solutions
satisfy (1) include arbitrary functions U, whose number s = C,2,
and the matrix of these arbitrary functions is symmetrical with

respect to diagonal with zeros along the principal diagonal. For -
instance, the structure of differential equations whose trajectories -

are disposed on surface F (x, y, z) = 0is determined by equations
dx 6F oF
d(p gy y Y237
dy oF oF
do u16x+u382 , )
dz oF —u OF
dqa Y2557 "% y
where wuy, uy, us are arbltrary functions which determme the
trajectory on the surface once they are given. They may be any

functions as long as they satisfy Lipschitz conditions for right-
‘hand sides of differential equations. .

In simulating the trajectory at the intersection of surfaces

Fi(x4,%3,...,%,)=0 j=12,....m . (6)
m<n
the number of arbitrary functions u, in the structure of differen-
tial equations is determined as )
s=Cptt )

and it is possible to determine the disposition of these arbitrary
functions in the structure of the equations.

As an illustration of these methods of synthe51s differential
equations will be found whose solutions are disposed on surfaces

Fj(X1,%2,%3,%)=0,  j=1,2 ®)

At first the arbitrary functions are designated, the number of
which in this case is C;* = 4

u;=Cjz3, U3=Cjz4, u3=Cy34, “4=,C234

The coefficient in which the subscript of the term C contains
unity are disposed in the first line; the coefficients in which this
subscript contains the number two, are situated in the second
line, etc., that is,

dx,

where the letter D designates the sum of the products of partial

~derivatives of the function (8) with respect to variables whose

subscripts are present in the subscripts of the term D.

6F1 OF, OF, OF,
12= —— etc.
6x1 0x, 0Ox, 0x,’ .
The superscript of the term D denotes the line. ‘
The signs before the terms in egqns (9), as can be shown, are
determined by the following rule: consider the order of the
superscript and subscript of the symbol D, for instance that
normally indicated by a pointer, and if there is an odd number
of violations of the normal order, a minus sign is used before
this term, and in other cases a plus sign is used. That is, for
terms of the top line one has orders 123, 124, 134 in which
there are no violations, and these are accompanied by a plus
sign; in the second line there are 213 with one violation (2 being
greater than 1), and a minus sign is used; 214 with a minus sign,
234—no violations—a plus sign; in the third line, 312—two

_ violations—plus sign; 314—one violation—minus sign; 324—
- one violation—minus sign; in the fourth line, 412—two viola-

tions—plus sign, and 413 and 423 also have plus signs.

In an analogous manner one determines the structure of
differential equations and the signs and dispostition of arbitrary
functions in the latter by simulating trajectories at any number
of intersecting surfaces with any number of variables. ’

It is of interest to note the presence of a maximum with
réspect to the number of arbitrary functions in the structure of
differential equations for systems with a number of variables
greater than six. The number of arbitrary functions for n < 6
decreases as the number of intersecting surfaces increases.
For n > 6 the number of arbitrary functions for an increasing m
at first increases, and only after having attained a maximum for
m = (n — 2) with even values of n, and for m = (n — 2+ 1/2)
for odd values of n, does it begin to decrease.

The arbitrary functions #, in the structure of differential
equations may be utilized as means of control in specifying
prescribed motions on multidimensional surfaces, and as means
of self-tuning of an automatic control system. Formula (7)
relates the number of dimensions of the control space to the
number of degrees of freedom of an automatic control system,
and to the number of constraints imposed upon the system,
while the presence of a maximum in the number of arbitrary
controlling functions indicates an optimal structure as regards
self-tuning of a holonomous system for n > 6.

Determination of Extrema of Functions

The problems of searching out the extrema of functions is
one of the most widely encountered ones. There exist different
methods of finding extrema in the presence of known partial
derivatives, and different methods of automatic determination

1 1 "

E_ulD” +u;Dz4+usDsy of these partial derivatives. However, at the present time, the
dx A * methods of searching the extrema of functions in the presence
2y L Df3—u2 Df Hu 4D§ " of constraints placed upon the variables are not sufficiently
de . ) well developed, and none of the existing methods assures that
dx, 3 3 3 the motion to the extremum will proceed along a geodesm or
E=H1D12—U3D14*U4D24 the shortest line.

In order to find the extrema one may utilize arbitrary
dx, =u,D*, +u.D* +u,D* coefficients in the structure of differential equations. Indeed, in
do 2‘ 1271 TS T RaTs order to assure the motion to an extremum-maximum with
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respect to coordinate x;, it is sufficient to prescribe such a motion
that the coordinate x; increases all the time, and this may be
achieved by specifying the. coefficients u; in- a proper manner.
For instance, in order to attain a'maximum with respect to z on

the surface F(x,y, z) = 0 it is sufficient to assume in the system .

of eqns (5):
OF OF
2 __2or
uz—‘ha as 3y
In this case .
d_x_ OF ZBF 6F
do "3y “oxoz
“dy oF 26F OF
do” M %y (10)

Sd_z..—az QF_ 2‘+a2 a_F :
dp '"\dx) 2\dy

where dz/d¢ will be a positive definite form of a constant sign
for all real values of x, y, z, which assures the stability of the
process of finding the extremum in accordance with Liapunov®.
At the point of the maximum with respect to z, the velocities

with respect to all coordinates become zero. For a system of .

eqns (10) the point of maximum with respect to z proves to be a
point of stable equilibrium. In the motion toward the extremum-—
minimum

oF oF
u2=—a%a » Us _aiay

and dz/d¢ will be a negative definite form.

In an analogous manner we determine the coefficients u; for
a specified motion toward the extremum for surfaces with a
large number of dimensions as well.

The synthesized structures may be utilized for searching out
extrema of functions with any number of variables for individual
surfaces as well as for cases in which constraints are taken into
account, that is, for intersecting surfaces. For instance, in
searching the maximum with respect to coordinate (x,) at
the intersection of surfaces (8) for a specified motion toward
this extremum it is possible in the system of eqns (9) to let

D33

and dx,/dg will be a positive definite form, and this fact assures
stability of the process of searching the extremum according to
Liapunov. ’

For a motion toward the extremum prescribed in this manner
there remain free arbitrary functions in the synthesized struc-
tures, the number of which functions is equal to: ’

s=C 7 =Gy

These free arbitrary functions may be utilized for simulating
the trajectory during the time of the motion toward the extremum.
In the example considered above there remains a free arbitrary
function #, in the system of eqns (10). The free arbitrary func-
tions may be utilized for prescribing the motion toward the
extremum along a geodesic curve or one which is close to it.

uy=Dyy, u3=Dy3, ty=

It should be noted that all stationary points for the obtained -

differential equations will be points of equilibrium, but only

points of the extrema will be points of stable equilibrium, whlle‘

the saddle points will be points of unstable equilibrium.
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_ If the number of intersecting manifolds is m = n — 1, then
they determine a line in the n-dimensional space. In this case
the problem is reduced to searching out the extremum in a
one-dimensional manifold. It may be assumed that dp = wdt,
where ¢ is the time and w is an arbitrary function which satlsﬁes
the Lipschitz condition, and

dx;

-&T—wé(xl,xz,. i=1,2,...,n

‘2 xn)y

For prescribing the motion toward the extremum in this case
it is only necessary to specify the direction of the motion along
the line. For example, in the motion toward the maximum with

respect to x,, it is sufficient to assume that w = &, (x1, Xg, ..., Xp),
and then '

dx; )

dt é (xl’x2’""xn).él(xlaxZ"'v,xn)

dx,

dt '—én (xlsxz’ >xn)

There follows a comparison of the described method of searching
out the extrema and the gradient method. As shown by
Krasovskiy?, the gradient method assures stability, according
to Liapunov, in the computing process of searching the extre-
mum. This constitutes the similarity between them. But the
gradient method assures the displacement toward the extre-
mum only along some special trajectory, while the proposed
method permits the varlatlon of trajectory of motion toward
the extremum,

Indeed, in the system of eqns (10) there remained one free
arbitrary coefficient # which may be specified by a different
method and which supplements the definition o ftrajectory for
the motion toward the extremum. An analogous situation exists
also in searching the extremum for other manifolds or their
intersections, except for those which are one-dimensional. The
gradient method constitutes a special case of the considered
method of searching the extrema, when all the remaining
arbitrary coefficients are set equal to zero; for instance, for the
system of eqns (10), when u, = 0.

The remaining arbitrary coefficients may be prescribed in
such a manner as to assure the motion toward the extremum
along a trajectory which is optimal in some sense, including in
this number a geodesic trajectory.

Figure 1 shows a block diagram of a system which searches
out an extremum at the intersection of surfaces. The controlling
signals produced by an analogue programming device (PD) are
supplied to several simultaneously optimized plants 0y, O,

., 0,. On these plants the current values of partial derivat-
ives which are supplied to the programming device are detei-
mined in some manner. The programming device constitutes
a. differential analyser (in .particular, an electronic. analogue
installation) whose structure was described in the preceding
paragraph. The setter of trajectories (ST) carries out such
prescription of the arbitrary coefficients which remain free after
the prescription of motion toward the extremum in order to
assure the displacement toward it along some desired trajectory.

If the equations F;(xy, X9, ..., Xp) =0, j=1,2,... . m are
known, then 0y, 0,,...,0, are simply functional transforms. If
only a part of these equations is known, this means that a part
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of 0,,0,,...,0,, are functional transforms (computer assemblies),'
while the other part are the plants.

In Figure 2 is shown the block diagram of a system WhICh
utilizes the method of searching the extremum described above.
As an example consider the case of searching the maximum on
a surface F(x, Xy; X3, X,) = O with respect to coordinate x,.
The structure of the.analogue device in this case is defined by
equations

Gx,_, OF | oF oF oF
de  'Ox, *0x; 0x, 0x,
G, OF, oF oF oF
dp  "'ox, ‘ox; ox, 0x,

o, _, OF | OF_SFOF
dop  20x, u46x2 Ox3 0x, ] !

dx,” (oF\* (oF\* [oF\?
el ) =)+
O0p \0x, 0x, 0x;

In this instance we assume that 0F/0x, = — 1. The current

values of partial derivatives may be determined by the method
of synchronous detection. The considered-system for u; = u, =
= ug = 0 is transformed into a scheme of extremal system cited
by Krasovskii’ and it differs from this scheme by the introduc-
tion of cross-links supplied to the input of the integrators. At
the same time, the coefficients u,, u,, u; may be either constant
magnitudes or functions of coordinates x;, and be controlled by
some index of the quality of operation of the system.

In specifying the motion along a geodesic curve in egn (10)
the free coefficient #,, for instance, may be determined from the
condition that for a geodesic curve the main normal to the
curve coincides with the normal to the surface, and at the same
time u; is determined as a complex function of coordinates.

If we search an extremum with respect to coordinate y
on the surface F(x,y, ) = 0, where ¢ is the time, then the
structure of the analyser which specifies the motion toward the
extremum will be defined by equations

dx_ OFOF_ OF
dt oxdy 2ot

dy (oF 2+ F\?
dr \ox or

_y, OF _OFOF
Tk T by

As can be seen, by virtue of the last equation of this system
of equations, the number of free arbitrary coefficients decreases.

It is possible to determine such constant coefficients «, which
assure the motion toward the extremum, perhaps not along the
geodesic curve but at least along a path which is shortcr than
the trajectories followed during the motion toward the ex:-enum
by the gradient method, that is, when the free arbitrary coe Ticients
are equal to zero. During the motion along a geodesic curve
these coefficients in the general case will be-complex functions.
For constant free arbitrary coefficients, the technical realization
of the proposed method is considerably simplified.

On the Search of Extrema of Functions in Automatic Control
Systems ’

The operation involved in searching out extrema at the
present time is automated to a large extent and may be used as
a basis of construction of various automatic control systems.
In the case of a limited range of change of variables the extremum
may be sought taking into account the constraint.

Y x}=R?

The method described above permits this approach.
Frequently in controlling chemical production of great com- -
plexity the problem of optimization of the free index of the
quality of the process arises; for instance, if there is an object
with a characteristic F(x, y, z) = 0, and it is required to determine
such values of x, y, z which would provide an extremum to the
free index z" = I3 x + myy + ny z where I3, my, ny are constant ’
quantities, then this problem may also be solved on the basis
of the method considered above.

Rewriting these equations using other designations, one has

Fi(xy,%3,x3)=0
F2=l3x1+m3x2+n3x3—-x4=0

The structure of differential equations whose solution lies at
the intersection of these surfaces is determined as (9), where

OF, . oF,
Dlz—msa X =l 3%,
D,3—n3ax1 I36x3

_®oF, . oF, _ 0F,
D”—_EZ’I)“"%E_’”%%
Dy 1 _ O,
PTdx, YT Bxg

The partial derivatives of the characteristic of the plant may
be determined by some automatic method? 2.

The problem considered above.may be formulated as a
problem of searching an extremum in a given direction, which
is ‘characterized by coefficients I3, mg, nz. At the present time
an effort is. being made to utilize the operation of searching
extrema for solving the problem of constructing the motions!®.

“The problem of constructing the motions based. on energy

levels!: 12 may be formulated for the given kinematic scheme in

‘terms of the intersections of the manifolds, and the motions

themselves may be regarded as a solution .of the problem of
searching an extremum in a given direction.

In conclusion, consider the problem of possibilities of a
global search. The finding of an extremal extremum requires
a more thorough study of the investigated functions, and at the
present time various strategies for solving this problem!> 10, 13
have been proposed. One can propose yet another strategy for
solving this problem as follows. Suppose that it is necessary
to find the maximal maximum. Having investigated the function
and having found several maxima, it is possible to pass a
surface through them and the maximum of this surface will be
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at least in the zone of gravity of the sought maxirhum of the
maxima. If the approximated surface will have several maxima,

then it may be smoothed in the same manner by finding the
" second approximated surface, etc. The number of approximated

surfaces will be determined by the complexity of the investigated

- function.
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Automatic Systems with Learning Elements
G.K.KRUG and A.V. NETUSHIL

In the automation of continuous processes in the chemical
industry (polymerization, fractional distillation, desiccation),
in metallurgy (blast-furnace processing, rolling), in the paper,
cement, food, and other industries, and also for the heat treat-
ment of various materials, a number of difficulties are encount-
ered which are due to incompleteness or lack of a mathematical
description of the process.

Knowledge of the physicochemical laws determining the
process gives only a qualitative idea of the principal relationships
—insufficient for automatic control of the process.

Quantitative investigation of complex processes is carried
out by experimental statistical methods!=3. As a result of
mathematical treatment of sufficient information on the process,
some equations of the connections between the parameters of a
plant can be obtained. However, the presence of uncontrolled
disturbances not only determines the probability character of
these equations, but at the same time leads to the necessity of
constantly examining them. In controlling such processes, the
operator is guided to a considerable degree by past experience
and intuition.

The algorithm of the functioning of automatic devices,
designed for the optimal control of a process, must formally
resemble in many respects the algorithm of control by a man.
The operator, on taking control of the plant, has only the most
general information on the nature of the actions required in
various cases. As work proceeds, control experience is accumul-
ated, and using past experiences definite tactics are worked out
for use in the various situations. By constant improvement in
methods of working, control of the plant is learned. In so doing,
the results of experimental observations on the plant are often
used, without going into the physical or chemical nature of the
processes taking place.

With the object of obtaining fuller information on the
controlled plant, the operator sometimes carries out test varia-
tions of the parameters according to a specific programme, and,
having analysed the results, carries out the appropriate alteration
to the method of operation.

Thus the control process can be presented in the form of a
combined solution of two problems: (a) the study of the con-
trolled pant, and () the control of the.plant with the aim of
obtaining the optimal behaviour.

Depending on the nature of the process, study of the plant
can precede the development of a control algorithm, be periodic-
ally repeated during the control process, or be organically
combined with the control process, providing continuous
correction of the control algorithm.

Consider the set-up of the problem of control of the plant
shown in Figure 1, classifying the parameters of the object of
control as follows:

(1) The set of primary controlled parameters of the process
(the vector X)—The magnitude of this set of parameters cannot
be varied by the operator; for instance, the measurable character-
istics of the input item or of incoming components, humidity,
chemical composition, consistency, and certain indices character-
izing the course of the process, such as change of the condition
of the equipment, etc. Certain physical restrictions are laid upon
the values of the primary parameters.

Xely

where I'y is the region of possible values of X.

(2) The set of secondary controlled parameters of the process'

(the vector K)—This characterizes the state of the plant output,
i.e., the quality of the end product.(chemical composition,
physical characteristics). There is a certain domain I, where the
values of K satisfy the prescribed requirements for the quality
of the product.

(3) The set of control parameters (the vector Z)—The operator
can influence this to vary the process, i.e. flow rate of water,
fuel or raw material, conveyer speed, and pressure and tempera-
ture in different zones of the installation. '

(4) Index of the efficiency of the processes (I)—In calculating I
the cost price and productivity of the installation are taken into
account. The productivity of the process alone can be taken as 7.

(5) The set of uncontrolled effects (the vector Y)—This

_includes changes in characteristics of equipment owing to

ageing, uncontrolled changes in quality of the input components,
and uncontrolled variation of the process parameters, such as
ageing of the catalyst.

In formal terms the process can be described as follows.
At the plant input there occurs a variation of X. In the plant
some alteration of the primary, control and uncontrolled
parameters takes place, the results of which are felt at the plant
output (K) after the expiry of the time of the technological cycle
(73) peculiar to the plant.

In the general case, the problem of controlling a process
reduces to satisfying the following conditions:

KEFk I=Imax

In discrete processes, for every cycle X and K, and also Z, are
constants. Each of the components of Z can be a time function
with the interval 0 < 7 < 5. Minimizing the departure of this
function from some prescribed mode often determines the
quality of the product. The presence of uncontrolled factors
and their nature are of the greatest importance in the choice of
a control system.

The effect of uncontrolled factors can be partially reduced
by the installation of a system of stabilizers of the various
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process parameters, which neutralize the effect of random
disturbances in the control network, and by the implementation
of control by acting upon the corresponding settings of local
stabilizers. Complete elimination of the effect of random factors
is, however, theoretically impossible. Depending on the value
of the uncontrolled factors, the control principles can be divided
into the following three groups.

(1) Investigation according to a particular algorithm with
the aim of establishing an optimal law of control, with sub-
sequent realization of this law.

(2) Optimizing the process by means of a continuous,
automatic predetermined search for the extremal regime.

(3) Optimization based on automatic statistical processing
of experience of control, and application of the learning principle.

The first control principle finds application when it is
possible to minimize the effect of the uncontrolled factors.

When the influence of the uncontrolled factors is considerable
and the necessary information concerning the plant is lacking,
the second or third principle of automatic optimization may be
applied, according to the degree of complexity of the process.

Work is in progress in the laboratory of the Faculty of
Automation and Telemechanics of the Moscow Institute of
Power on the development of all three principles of self-
adaptation of automatic control systems. Some of the questions
the laboratory is working on are set out below.

Combined System of Programmed Control

It often happens that a definite relationship can be established
between the quality of the product and some index of the regime.
In these cases it is expedient to implement programmed control
according to this index, thus securing the required quality of the
product. This system is feasible if the index in question can be
related to the number of controlled parameters X. When, owing
to the complexity of the mathematical description of the plant,
it is difficult to establish the required law of control according
to the controlled parameter, the law must be found experiment-
ally. One method for finding this law is to find a parameter Y,
which is uncontrolled under normal control conditions, and
is such that the quality of the product uniquely depends on it.

If, during the adjustment time of the process, it is possible
to control the process temporarily by this index, and if there is
a definite relation between this index and another controlled
index by which it is possible to carry out control in normal
operating conditions, then the solution of the problem-can be
found by a combined system of programmed control.

Let there be two indices of the course of the process, M and N.
To obtain the requisite product quality it is sufficient that

N eNy(1)

where Ng(t) is the mode prescribed by technological con-
siderations.

If during‘the adjustment time of the process it is possible
to control the process by N, given a programme Ng(7), it is
possible to carry out a series of trials, storing the resulting
law M (7). After statistical treatment of a series of such functions
M (1), a law of control can be chosen by M and the required
law specified My ().

Continuation of the process reduces to conventional pro-

rammed control by Mgy(7).

Thus in the first part of 'the control process

Z(W)=N()

X(@)=M @) @
In the second part of the process

Z(t)=M (1) (2)

This control principle is employed in a combined programmed
controller for the process of induction tempering, in which N (7)
is the surface temperature of the itcm, measured by means of
a thermocouple soldered on to it, and M (z) is the voltage on
the inductor. To obtain the required quality of tempering, heat-
ing must comply with a given law, for instance, rapid heating
at constant speed followed by holding at constant temperature
(curve 1 in Figure 2) or by slow heating at constant speed
(curve 2 in Figure 2). :

Exact calculation of the variation of the inductor voltage
corresponding to the required temperature changes involves
certain difficulties, since it is necessary to solve simultaneously
three-dimensional Maxwell and Fourier equations for non-
linear inhomogeneous media%.

Setting the programmed temperature controller according
to a specified law and ‘remembering’ the variation of inductor
voltage in the process of temperature control (full line in
Figure 3) make possible the determination of this law experi-
mentally, and a programme can be drawn up for control of the
tempering process by the inductor voltage (broken line in
Figure 3). Programmed control of the inductor voltage dictates
the course of the tempering temperature, thus ensuring the
required quality.

The accuracy with which the temperature process is carried
out depends on the extent of the influence of the uncontrolled
factors (variation in material of the billets, of the current
frequency, parameters of the generator, etc.). When these
factors are relatively stable, this system for controlling the
process provides the required quality of production.?

Control Systems Based on the Learning Principle

If the uncontrolled disturbances vary continually with time,
automatic optimizers can be used, which carry out a predeter-
mined search of the extremal regime$—10,

The disadvantage of using optimizers is that often the
algorithm realized by the system does not match the com-
plexity of the problem of control of many processes simul-
taneously.

Consider a system of the learning type based on the principle
of accumulation of positive control experience. It is assumed
that from the dynamic point of view the plant is a non-linear
element with pure time delay 7, for every pair of parameters
affecting its input and output.

The block diagram of Figure 4 shows two interconnected
blocks, one of which (Unit 1) supplies the control actions, in
accordance with the method of operation of the process, in
relation to the values of the primary parameters; that is, it
realizes the principle of input control (by disturbance). To find
the required law of control, feedback of the incentive type is
introduced to signal the results of control, on the basis of the
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values of the secondary parameters (incentive feedback are
shown in the figures as a broken line).

Unit 2 takes into account the values of the secondary para-
meters, and trims Unit 1 in accordance with variation in charact-
eristics of the plant. The functioning of Unit 2 is in some degree
similar to that of automatic control systems which realize the
principle of control by error. Application of the combined
principle of control is the most promising method for the design
of an automatic control device.

The information stored in the memories of Units 1 and 2
must, in an integral manner be a mathematical model of the
process controlled in the best way in a predetermined manner.
If the uncontrolled disturbances are of a varying nature, the
mathematical model must constantly vary and adjust itself.

Two methods of information storage are possible—the
table method and the formula method. With the former, the
information is stored in the form of tables whose contents
change in accordance with the algorithm governing writing and
reading.

Table 1 shows a possible arrangement of the tables applicable
to Unit 1 and Unit 2.

In the table for Unit 1 the values of Z are stored at the
location of X. When coupled with the vector Z, the index I

Table 1. Information storage in automatic control device

Unit 1 Unit 2
X, |zyn\zn” AK, | 4z | 4z
X, |Z,)1,\Z, 1" 4K, | 42, | AZ,”

defines the efficiency of the process for the prescribed com-
bination of controlled primary parameters and control para-
meters.

In the table for Unit 2, the values of the vector 4Z, that is,
those values of variation of the control parameters which have
restored the quality of the product from the state 4K to the
required level I, are written in the location of the vector AK
which characterizes the departure of the quality vector of the
end product from the specific value.

With the formula method; the quantitative connection
between the controlled parameters is fixed in the form of a set
of equations, in a polynomial form, for instance.

For Unit 1, the equation for one of the components of the
vector has, in the general case, the form (for standardized values
of the variables?):

Cz=a Xt e 0, Xt G X
+ay, X5+ ... +ayX? (3

or in more compact form

M=

Z,=

J

a; [T X~ ’ “
1 k=1

522/3
where

m
Y % <p
k=1

For Unit 2 the equation for one of the components of the
vector has the form: ‘

AZ;=bAK + ... + b AK,+ ... + ay,AKS 5)
or in more compact form:
M n
4Z;= Z b; H AKG* (6)
j=1 k=1
where
ne
Y ap<S
k=1

It may be presumed that, by means of a special algorithm for
writing and reading the current information characterizing the
controlled process, it can be said that the automatic devices
incorporating either the formula or the table principle will be
in some sense equivalent.

In whichever form the information may be stored, there
must be an algorithm allowing processing of the incoming
information in such a way that the contents of the memory
express in the best way possible the current model of the con-
trolled process. In the following an algorithm realizing the
formula principle is considered.

Control Algorithm

The control algorithm is based on three cocfficients:
(a) prediction coefficient; (b) time weighting coefficient; and,
(¢) quality weighting coefficient.

Prediction Coefficient

The higher the power of the approximating polynomial, the
more precisely can the main connections in the plant be des-
cribed. However, with increase in the power of the polynomijal
there is a considerable increase both in the complexity of the
programme and in the time for calculating the coefficients.
A criterion is needed which makes it possible to evaluate
quantitatively the precision with which the polynomial obtained
approximates the actual relationship. This criterion is called
the prediction coefficient since with its aid the dependability of

_ the polynomial when used in the domain of the variable whichs

have not yet been encountered can be evaluated.

The coefficients of the polynomial are determined from the
minimum of the mean square of the approximation.

Use is made of the method of bringing a multiple non-linear
correlation to the linear form3.

The whole set of parameters X entering into each term of the
polynomial eqn (4) is regarded as an independent parameter

=[] X&* (7

Z=Y ag, 8)
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The auto-correlation coefficient of eqn (8) is found and
expressed in terms of the auto- and cross-correlation. coefficients
of the variables

oM ,
Kzz=1= =Zaia‘ke,-5j i &)

where

and M is the number of successive measurements of the
variables. For convenience of analysis, eqn (9) is normalized,
selecting as the norm the dispersion

M
_ZI Z3;
Dy, = = M (10)
where Z, is the observed value of the function.
Dividing eqn (9) by eqn (10) gives
M
K aa;k,,,
2z _G=1)j=1 (11)

D, Dy,

If Z, = Z,,, both sides of eqn (11) are identically equal
to zero. : :

In fact, the following inequality holds.

M
a;a;k,,;
g=i=LJj=t = 4 12
R (12)

since by determining the coefficients of the approximating
polynomial by the method of least squares a ‘smoothing’ is
produced, the magnitude of which depends on the power of the
polynomial. _

The quantity O quantitatively expresses the degree of the
probability prediction, i.e., the quality of the approximation.

Fixing a definite degree of prediction (0 — 1) and passing
successively from p = 1 to p = 2-3 etc., the system will cyclically
check the actual degree of prediction by eqn (12), and seek the
correlation 6 > 0,.

It is also expedient to estimate the weight of each term of
the polynomial. This can be done with the aid of the coefficient.

-k
ﬂj,:ilf_ﬂ<1 (13)
DZo .

Setting the minimal level 8, for the coefficient f;, it is
arranged that after each operational cycle, §; is calculated for
all the terms. Terms with §; < f, are eliminated from eqn (8),
freeing the equation from weakly expressed connections of

Coefficient of Time Weighting

Owing to the unstable nature of the vector Y, the coefficients
of the approximating polynomial 'must continually vary. The
object of time weighting is to calculate the new values of the
paired products of the variables which determine the correlation
coefficient with a greater weight than the previous one, and
gradually to forget the past values. The simplest method of time
weighting is that of the sliding interval. With this method the
correlation coefficient is calculated with respect to M previous
values of the paired products

M
‘;1 (&8 N j

kszaK=J——M~M

(14)

where N is the serial number of the measurement.

The disadvantages of this method are the presence of a
‘transient process’ in the calculation of the correlation coefficient
(for N < M), and the necessity for storing in the memory all
the values of the paired products used for calculation.

A method of continuous weighting is possible, for which
each paired product is multiplied by a weight function of the form

Gy=ao""" 15)

where N is the serial number of the last cycle; i is the serial
number of the information for which the weighting coefficient
is being calculated ; and o« < 1 is the coefficient of time weighting.

It can be shown that when the weighting function is intro-
duced like this it is sufficient to store only the resulting value of
the correlation coefficient for the (N — 1)th cycle.

In fact:

. - .
Z (ei81); A

(KszeK)N =:

) |
NT Gy (16)

- where f(G,) is a coefficient taking into account the attenuation

of the information summed up in the numerator of eqn (16).
Putting (g; &)y + (& 81)g = ... = (&, €)N = & &, the values
of the coefficient

GCN_i

f(G)=— )

”M'Z

Hence, substituting eqn (17) in eqn (16) gives

N-1

N
Z (&)o'« Z, (eg &V T (e )y
(Kmak)N:l_l N = =1 N (18)
5 o y o
i=1 =

Call the total coefficient of attenuation per cycle

L= N-1
. N=0 .
secondary importance. Th
The coefficients of the approximating polynomial are en Ne1 :
fun?tlons of the auto- and .cross-correlagon cc;eﬁicwnfts for the Ly=a Y oMy l=aly_+1 19)
variables ¢; and the approximated quantity Zyo. i=1
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Bearing in mind that

N-1 )
Z (81(°'t¢)i951\1_l—1

K _ =1=1
( msk)N 1 LN—l

write

oLy (K, v -1+ gy
(stsk)N'—' dLN__1+1

(20)

Thus to calculate the correlation coefficient in the Nth cycle
the value of the correlation coefficient in the (N—1)th cycle
must be stored, and also the total coefficient of attenuation in
this cycle.

If N tends to infinity, the limit value (K¢; ;) is given by

_ (Keen=0 (K, v 1+ (1 — ) &g (2D
since
. 1
li = —
N1:r; Ly 11—«

It must be remembered that the calculated correlation
coefficients are modified indices of the interconnection of two
random functions. It is therefore more accurate to call these
coefficients pseudocorrelation coefficients!?.

Coefficient of Quality Weighting

Besides being weighted for time, the information arriving
from the plant must be weighted for quality. In other words,
evaluation of the information must depend on the magnitude
of the technical and economic index to which it corresponds.

The introduction of quality weighting allows purposeful
accumulation of information with deliberate ‘reinforcement’.
Although the polynomial so calculated approximates the inter-
connection between Z and ¢ in a distorted form, its value lies
in the fact that it expresses the control problem.

In the general case, the quality index p is a function

p=o(k,[D

Introducing the coefficient of quality weightung g, which
depends on the value of the quality index p, g = G (p)

g=0 when p<p,
1<g<1 when p=>p,

where p, is some specified level of the quality index.

Taking- into account weighting with respect to time and

quality, the correlation coefficient is written in the form

N-1
o '21 ()" " g+ (88 )y gn
(kcxek)N= l_-

(22)

Using the notation

ocN.'igi=RN

M=

.
1}
-

as with eqn (20) gives

k _aRy_; (Keedn -1+ (&8N Ex
( sxek)N— R
XRy_1+ 8N

23)
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Selection of the Control Coefficients

The introduction of the coefficients 0,, S, «, ¢ makes it
possible to work out the current mathematical description
securing the best control of the process. The success of the work
depends to a considerable extent on the correct choice of
numerical values of the coefficients. The system must be capable
of automatically varying the values of these coefficients in
accordance with the variation of the statistical characteristics
of the vector of the uncontrolled factors.

In fact, in the periods of time in which a variation of the
vector Y takes place it is necessary to secure the quickest
possible renewal of the memory (to decrease «), to reduce the
power of the polynomial and simplify its form (to decrease 6,
and f,) and to increase the significance of a successful control
trial (to increase g,).

It appears that the difficulties of the problem are insuperable,
since the vector itself does not enter into the polynomial in
explicit form; however, some approaches to its solution may
be noted.

As an indirect measurement of the variability of the vector,
the mean square of the variation of all the correlation coefficients
in one cycle of calculation can be taken -

[kurodw — o dw—117
0

where Q is the number of correlation coefficients subject to
calculation, and

M-

[l

A?=i=1 24)

=m(m—1)

0="2% )

where m is the number of terms of the approximating polynomial.

To average this evaluation and to eliminate the effect of
disurbances of short duration, a quantity A4, calculated from
a finite number of cycles in the sliding interval of the average,
can be used.

The evaluation can also be continuously averaged with the
aid of time weighting, as in eqns (20) and (21).

Using the evaluation of the non-stationary vector A4, it can
be connected with (in linear form, for instance) the coefficients
B¢, B> *, g Which control the mathematical model of the con-
trolled process.

Realization of the Algorithm of Control

As an illustration, Figure 5 shows a programme of the
functioning of a learning system of-the formula type (without
automatic trimming of 6y, f,, o, g). ’

The programme is realized by means of a digital computer.
The programme envisages random search for AZ in the case
when application of the recommendations held in Unit 2 does
not lead to the required result.

The memory device is divided into two blocks, independently
dealing with only the primary or only the secondary parameters
of the process, in contemplation of linear introduction of the
control parameters into the general connection equation;
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that is, automatic devices of this design are best used with
plants whose connection equations have the form

ki:Z[ZjFli(Xs Y)+Fy (X, Y)] (26)

J

where Fj; and F,;-are any functions of the primary parameters
and uncontrolled factors Y.

Depending on the characteristics of the process, and in
particular on the nature of the variation of the uncontrolled
factors (vector Y), and also depending on technical and economic
considerations, the mode of operation may be coatinuous,

.cyclic or one-time.

With continuous operation, the automatic device is connected
with the process permanently, and learning is continuous. This
mode of operation is suitable for processes in which the uncon-
trolled factors vary continuously and substantially.

The cycle mode of operation consists of periodic connection
of the automatic device to the plant for correction of the law of
control. The interval of time during which autqmatic control
is carried out by a rigid programme worked out by the automatic
device is determined by the periodicity of the variation of the
uncontrolled factors. In this method of operation, the device
can serve several processes at the same time.

The one-time mode of operation can be successfully applied
during running-in tests of technological processes for which
variation of the uncontrolled parameters is small. A final mathe-
matical description of the process worked out by the device
is used for further control of the process in the form of flow
charts, for the simplest programmed control systems realizing
the law of control obtained.

Y
K -
x [t~
— Plant
[
Z

Figure 1. Plant
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Figure 2. Heating characteristics of sample during tempering
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Figure 3. Variation of voltage on inductor
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Figure 4. Block diagram of automatic device 5
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Figure 5. Programme of formula-type automatic device.

1: Input of parameters X;; 2: calculation of parameters Z; from eqn (3); 3: action upon plant; 4: input and analysis

of K; and I;; 5:stop; 6: calculation of correction 4Z; from eqn (5); 7: action upon plant; 8: input and analysis of Kj;1

and f;4y1; 9: random search for process input 4Z;,1; 10: conversion of K, ¢; and D70, Il change of control coefficient
[eqns (3) and (5)]; 12: stop
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Synthesis of Systems with the Fixed Characteristics of
Equivalent Self-adjusting Systems

M.V.MEEROV

The problem of ‘self-adjustment’ in a control system arises in
connection with the fact that in the operational process the
characteristics of the control object may vary within a wide
range. Under those conditions, the adjustment of the control
system, or even its structure, which was. entirely expedient for the
initial form of the object’s characteristics, may prove to be
completely unsatisfactory for the altered characteristics.

A change in the characteristics of the object to be regulated
may be conditioned, basically, on the two most prevalent
factors. In the first place, a change in the characteristics may be
brought about by external disturbances that are applied to the
object; and in the second place, a change in the object’s character-
istics may take place in the course of its operation.

The problem of ‘self-adjustment’ also comes up in a number
of cases where the information regarding the characteristics and

properties of the object is insufficient; it is only known that the

object’s characteristics have an extremum for some qualitative
criterion, and the control system’s problem consists in a search
for this extremum and in maintaining the object’s operational
conditions on this extremum. A rather large number of studies
(for example, by Fel’dbaum! 24 and by Doganovskii and
Fel’dbaum®) have been devoted to methods of searching for,
and adjustment of the system to, the disclosed extremum. In the
present paper, methods are considered for the purpose of
constructing systems with fixed characteristics that would
maintain the most favourable adjustment, independently of
external disturbances, and the character of which may be
practically arbitrary. The sole limitation is the one regarding

disturbances in accordance with the modulus (absolute value). .

In the present study, no consideration is given to the method of
searching for the extremal condition for some qualitative
criterion. If, however, the extremum is established by some
method or other, then the structures examined below maintain
this extremum automatically, without the need for a duplicate
search.

Methods of Constructing Control Systems for the Case where the
External Disturbances may be Measured

Consider the automatic control system whose schematic
diagram is shown in Figure I. In this diagram the designation
w, (p) is given to the transfer function of the regulating object,
kw; (p) and w;(p) to the transfer functions of the control

"system and of the stabilizing device, and F to the external
disturbance. kw; and wg(p) have been selected in such a way
that, in the absence of disturbances, the F(p) process, which is
the most favourable from the point of view of the selected
qualitative criterion, is attained in the case of a sufficiently large
amplification factor, k. Thus, for example, the optimum operat-

ing conditions are realized where there is an unlimited increase
in the amplification factor, the object is non-linear, and there
is a non-linear return communication in the optimum control
circuit with. an automatic potentiometer® 6. It is natural for the
designed circuit to remain stable where there is an unlimited
increase in the amplification factor. The following situation is
demonstrated: the structure, which is shown in Figure 1, upon
giving no consideration to external disturbances and where k
fends to infinity, is equivalent to the system in Figure 2, where
consideration is given to disturbances and Wwhere k tends to
infinity. In other words, in order to eliminate the effect of external
disturbances that are capable of being measured, they should
be supplied to the input of the stabilizing device in the form of an
additional signal. Actually, the transfer function of the system
in Figure I, without calculating the external disturbances, will
have the form: i

k( p) - izfutpit((;’)) -
kwy (p)
Tk w2 fows (p) w2 (p)
i kwy (p) L+kw; (p)ws (p)+kw; (p) w, (p)
L+kwy (p)ws (p) ’ M
Assume that k tends to infinity; then,
_ wy (p)w, (p) - owa(p)
Kaansied 0= o ws W (0) - s+ wr )

Now, the transfer function for the circuit in Figure 2 is found;

_one has:

Y (p)=kw; () {Xinput— Xoupus —[Y (D) + F (D Iw3 (2)}  (3)

Xouput D =W D [Y(D)+F(P)] 0
From (3),
y(p)= ‘ o
kw1 () Xinput (P) = kw; (D) Xguiput () — kw4 (P) w3 (p) F(p) )
1+kw, (p)w; (p)

Substituting the value y (p) from (5) and (4), one obtains either:
[L+kw, (p)ws (p)] X output (P)
=kwy (P) W2 (P) Xinput (P) = kw1 (P) W (D) Xoueput (P)
—kwy (P) w2 (P) w3 () F +w, (p) F +kw, (p) w3 (p) F
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from which:

le (P) Wy (p) xinput (p)+w2 (p)F(p) (6)
L+kwy (p)wy (p)+kwy (p) w3 (p)

Where k tends to infinity, one obtains:

Xoutput (p)=

wi(p)wy(p) Xinput (p)
wi (P)w, (p)+wy (p)ws(p)

Xoutput (p) =

or

. xoulput(p)= W2 (P) . .
fim Xinput (P) -+ W2 (p)+w3(p) M

i.e. exactly the same expression as eqn (2). From what has been
obtained it follows that the system in Figure 2, where there is a
sufficiently large amplification factor, will behave as a self-
adjusting one, in the sense that its characteristics will remain
unchanged despite the presence of external disturbances whose
character is practically unlimited.

Methods of Plotting Structures for the Case where it Does not
Appear Possible to Measure Disturbances Directly

Now consider the case where the object’s characteristics
change due to the effect of external disturbances, but where it
does not appear possible to measure these disturbances. Such
a situation is, for all practical purposes, highly prevalent.
A series of disturbances is difficult to measure, in the first place,
because of the properties of the disturbances themselves, and
in the second place because of the absence of sufficiently high-
speed measuring devices for the measurement of the external
disturbances.

The solution of the problem in the given case is carried out
in the following fashion. Assume that the object’s character-
istics are known for the case where disturbances are absent.
For this case, a control system is constructed in such a way that
the optimum operational conditions should be attained when
there is an unlimited increase in the amplification factor, k.
Strictly speaking, in the absence of interferences, the system has
the form shown by Figure 1. As was indicated earlier in this
paper, in the case where k tends to infinity, one has:

koa;. (p)=[w2 (p)]/[w3 (p)+w,(p)]

Now Figure 3 is plotted. The output of the controlling part
of the circuit, which is designated in Figure 3 by the letter y, is
fed to the input of the real object and to the input of the model
with the transfer function wj (p). In future, w, (p) is called the
transfer function of an ideal object.

The difference between the outputs of the ideal and real
objects is fed through a converting device with a transfer
tunction weonvert (2), to the input of the stabilizing device. Now
the transfer function of the system in Figure 3 is found.

Y ()= kwy (P) {Xinpue (1) = Xoucput (P)
- W3 (p) [Y (p) + (xoulpul (p) - xoulput (p)) wconvert (p)]} (8)

Xreer. (P)=Ww1(P) y () (10)
On the basis of (9) and (10), one may write:

xoutput (P) - xuutput (P)
=w,(My®+F()-Y@-Y(P)]=w,(p)F(p) (11)

in calculating (11), eqn (8) is written as:

Y(p) = kwl (P) {xinput (p) - xoutput (p)
—W3 (p) y (P)— W3 (p) Weonvert (p) Wy (p) F (p)} (12)

From (12), thé expression for y (p) is found, namely:

EEm)

By substituting the expression for y(p) from (13) in (9), one
obtains, after some elementary calculations:

[L+kwy () 3 (B)+kwy () 3 ()] Xouepue (P)
= kwy (9) W3 (P) Xinpue (P)
— kw1 (P) W2 (P) Weonver (P) w3 (P) F (P)
+w, (D) F (p)+how, (D) w, (D) w3 (D F (p)...  (14)

Assume that the transfer function of the stabilizing device
has been selected in such a way that the structure obtained
assures stability where there exists an unlimited increase in the
amplification factor, k. Dividing eqn (14) by k, and assuming
that k tends to infinity, one obtains, after some simplifications:

[WB (p) +w, (p)] Xoutput (P) =W (p) Xinput (P)

+ [WZ (p) W3 (p)_' W; (p) Weonvert (p) W3 (p)] F (P) e (15)

As is evident from (15), in order to eliminate the effect of inter-
ferences, the transfer function of the converting device should
be selected from the condition:

Wy (p) W3 (p)_W§ (p) Weonvert (p) W3 (p)=0 (16)

or: )
Weonvert (p) = 1/w2(p)

The realization of a device with a transfer function (16) may be
attained by methods of plotting structures that are stable in the
face of an unlimited increase in the amplification factor (6), and
it presents neither fundamental nor technical difficulties.
Generally speaking, the elimination of the influence of
interferences, in the given case, could be accomplished by the
method described by the author’. Naturally it is expedient to
make use -of the indicated method if there are no additional
interferences at the system’s input. If, at the system’s input,
there are interferences, in addition to the useful signal, then it is
possible to show that the solution given here is more noise-proof.
Let us convince ourselves of the accuracy of this affirmation.
It is assumed that, in place of the transfer function kw; (p),

Xoutput (D) =W, (D) [Y (p)+F (p)] ® and in place of a stabilizing device with a transfer function
* Egn (13): Y(p)—":le (p) Xinput (p)__kwl (p) xoutput(p)~kwl (P) Wy (p) Weonvert (p) W3 (p)F(p) (13)
1+kw; (p) w3 (p)
523/2
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ws (p), which provides for stability in the face of an unlimited
amplification factor k,” a system having the form shown in
Figure 4 is realized.

The introduction of an amplifier, with a high amplification
factor, which is encompassed by a stabilizing device with a
transfer function wj, depends on the necessity of providing

stability to the entire system in the face of unlimited increase |

in k. If w, (p) has a power ‘p’ in the denominator that is greater
than a ‘fourth’ one, then, as is shown in (6), it is possible to
introduce several amplifiers with high amplification factors and
realize a structure that would admit an unlimited increase in &
without disturbing the stability.

As is clear from (7) in this case, if xjppy contains no inter-
ferences, then an increase in the amplification factor k, up to
rather high values, eliminates the effect of the F interferences.

Assume that the input signal contains an interference finput
to the extent that

xinput = xinputu +finput

where Xinput o, 1S the interference-free input Signal.
A system of equations for the circuit in Figure 4 is drawn up,

.for the case under examination. At the same time, instead of the

part of the circuit surrounded by a dotted line in Figure 4,
assuming that here k is a sufficiently large number, one should
straightway insert 1/wj (p).-

Yl (p):k [xinputu(p) +finput (p)_xoutput (P)] LR (17)
Y, (p)=Y.(p)
g 3<)
= o D H i D =X @] (19)
W; (» ’

Xouput (P)=W2 (P)[ Y3 () + F (p)] (19)
Substituting the value Y, (p) from (18) in.eqn (19), one obtains:

WZ (p) xinputu(p) kfinput (p)
—_— + —_—
wmo P00

s () F (),

w3 {p
or:. k
[; Mé()]xwmmuo

Xoutput (P) =

523/3
Where 'k tends to inﬁnity, one obtains:
W2 (P) W2 (p)
output [ inputu (p) +.fmput (p)]
w3 (p) w3 (p) ’
or:
outpul (p)= xinputlc (p) +f}nput (p) (20)

Consequently, one obtains at the output a magnitude that
is equal to the ideal input plus the interference.

Consider, at this point, the size of the magnitude at the
output, in the presence of interference at the system’s input, and
with the elimination of the effect of F interference by the above-
mentioned method.

Keeping in mind that at the input of the system in Figure 3,
along with the useful signal, there is an interference feed, one
has the following system of equations (Figure 3)

Eqn (21) |*

or, considering (11), one has:

T
Egn (23) i

Substituting the value of y (p) from (23) in (9), and after some
elementary calculations, one obtains:

‘ Egn ( 24.) Tt

On fulfilling the condition w, (p) = 1/wy(p) and where k tends
to infinity, one obtains:

from 'which':v

w, (p)
w3 (p)+w, (p)

w, (p)
Ww—(p) input (p) (25)

By comparing the results expressed in eqn (20) and in egn (25),
one can draw the following conclusions. In the first case (eqn 20),
the greater the amplification factor, the closer the output
magnitude to the sum of the ideal input plus the full interference
at the input. In the second case (eqn 25), the picture is different.
Depending on the properties of the useful signal and of the
interference, especially for those cases where the frequency
properties of the interference, the parameters w;(p) may be

Xoutput (p) = Xinput u (p)

sz (» ) [xmpmu (p)+f; nput (0)]+w,(p) F(p) selected in such a way as to reduce the interference, which enters
w3 (p) at the input, together with the useful signal, to a minimum.
* . ,
Eqn (21) y(p)=kw1 (p) {xinputu(p)+finput(p)—‘xoutput (p)"_WS (p) [y (p)+(xoutput (p)_xoulput(p)) Weonvert (p)]} (21)
*k . ) . . i -
Eqn (22) y(p)zkwl (p) [xinputu(p)_finput (p)—xuutput (p)_WS (p)y(p)_wé} (p) Weonvert (p) W, (p)F(p)_] (22)
T Egn (23):

y(p)=

kwl (P) [xmpul u (p) + fmput (p) xoutput (p) kwl (p) Wy (p) W3 (p) wconvert (p) };:l

1+kw, (p)w;(p)

1t Eqn (24):

(23)

oupu ()= W“”W@”wm@ﬂ*m@Hﬁmﬂokm@wxmwmamw@wwwwm@wxmwwﬁ@)

1+kw, (p) w3 (p)+kw, (p)w, (p)

24
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A Change in the Object’s Parameters Taking Place as a Result of
a Change in the Operating Conditions or in the Internal Factors

This case pertains to plants, in which, in the course of

operation, the parameters of the object itself may vary within
a wide range. In such cases, the sensitivity factor, according
to Bode?®, represents an essential qualitative index of the entire
system. For the plants being considered here, the sensitivity
factor may be expressed in the following manner.

Assume that the object’s transfer function, as before
designated by w, (p). The overall tranfer function of the entrre
system in relation to changes in the object indicated by k (p),
is expressed in the following way:

dk(p)
Sl‘cv(p() = k(p) _ dk (P),Wz (p) (26)
20 dwy(p) dwy(p) k(p)
w,(p)
In the general case, the smaller the magnitude of S, (p), the
less sensitive are the dynamic properties of the system, in its
entirety, to changes in the plant’s properties. For this case, the
system is considered ideal or self-adjusting, if the magnitude
Sk does not depend on the characteristics of w, (p) or S,
tends to 0.

The following proof is given. Structures that are stable in
the face of an unlimited increase in the amplification factors, in
which stability is achieved by the introduction of ideal derivatives
and whose degree of ideality is determined by the magnitude of
the amplification factor (7), belong to the category of self-
adjusting systems in the sense indicated above. There is no
question about that. In Figure 5 one observes the structure of the
regulating system of the type under consideration. The transfer
function of the closed system will be written in the following
form:

——w(p)

k(=00 @7

' 1+‘—UW2(P)

Now the expression for the sensrtrvrty is found. In conformlty
with (26):

k k k- 2
Sk _Ws(P)[‘1+w3(p)W2(p)] < 3@)) w(p)
w2 (p) I: ’ P : :lZ
1+mwz(17)

or, after simplification:

1
S 29
1+——=w,(p)
w3 (p)

~where k tends to infinity, S » tends to 0. In other. words,

w2 (p)

" in the sense indicated above, one obtains an ideal system.

Now consider the expression for sensitivity, if the structure
belongs to the category of those that are stable in the face of an
unlimited increase in the amplification factor, and where stability
is achieved by the introduction of passive stabilizing devices.

As an example, one should consider the simplest type of
such a system whose structure is shown in Figure 6.

The transfer function of the closed system in Figure 6 is
written as follows:

kwy (p)w, (p)
k(p)= ! (29)
L+kwy (p)ws (p)+kw, (p)w, ()
The sensitivity, according to w, (p), is written:
Eqn(30) |"
or, after simplification:
I
Where k tends to inﬁrﬁty, one has:
limst® — W) (31)

a2 w, (p)+ w3 (p)

Consequently, in the given case, even with sufficiently high
amplification factors, a change in the parameters or character-
istics of the plant exerts an mﬂuence on thé dynamic properties
of the system.

Consider some methods for perfecting the system’s structure,

-with the object of reducing to the minimum the effect of the

variation in the plant’s characteristics on the system’s dynamic
properties, and in this manner, make the system self-adjusting
in the above-determined sense. '

Where external disturbances, which did not seem capable

of measurement, acted on the object, in this case, too, it is’

expedient to introduce a plant model into the system, in order
to obtain a self-adjusting system. A structural schematic diagram
for the case under consideration is shown in Figure 6.

Keeping in mmd the des1gnat10ns set forth in Figure 6, one

ke, (p) writes:
w
Wz( )< 32(;;) Eqn(32) |1
w, (p) Here, x’output(P) is the representation for the output of the plant’s
ws(p) 2(P model and Xougput is the representation. for the plant’s output.
* Eqn (30): sk _ kwy ) [kws () s (p) +kwy (p) w5 (p) + 1] —kows (p) kw, (p) w, (p) (30)
w2 (0 [14kw; (p) w3 (p)+kw, (p) w2 (p)]
" Sk _ kwy (p)-kw (p) Wa‘ (p)+kw, (p) kw, (p) w3 (p)
*2 " kw, (p) [1+kwy (p)ws (p)+kw, (p)w(p) 1+kw, (p)ws (p)+kw, (p) w2 (p)
T Eqn (32): Y (P) = kwl (P) [xinpul (p) — Xoutput — W3 (p) y—Wws3 (p) (xtl)uiput (P) — Xoutput (p))] ) ' (32) :
523/4
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It is assumed that the model’s characteristics remain invariable.
Under those conditions, the difference x’output (7) — Xoutput (P)
is equivalent to the disturbance that is conditional on the change
in the plant’s characteristics. Consequently

x(,)utput (p) - xoutput (P) =CF (P) . (33)

. C is a constant coefficient.

In this manner,
Youpu (D) =W2 () y (D) =w5 (1) y (D) +Cw; (D F(p)  (34)

Substituting in eqn (32), instead of X output (P) — Xoutput (P);
the difference value from (33), one obtains:

Eqn (35) |*

From the above, the expression for y (p) is found:

kw1 () Xinput (P) = kW3 (P) Koutpis (P) = W3 (P)CF (p)
1+4kw; (p) w3 (p) (36)

Substituting the value for y (p) from (36) in eqn (34), one obtains:

Eqgn (37) **

or, determining Xoutput (p) from (37), one obtains:

kw1 (p) w5 (P) Xinput + Wa(PXCF (p)
 L+kwi (p) w3 (p)+kw, (D) w3 (P)
Where k tends to infinity:

y(p)=

Xoutput =

W1 (P) W3 (P) Xinput (P) W2 (P) Xinpu (P)
wi (D) w3 (D) +wi (PwW2(p) w3 (p)+w2(p) (39)

From (39) it is evident that the output magnitude does not
depend on the change in parameters. of the regulation- plant.

Xoutput (P) =

(38)

523/5

Under-the conditions where w’ (p) corresponds to the optimum
operating circumstances, from the point of view of some
qualitative criterion, the process in the system will be maintained
automatically at these working conditions, independently of the
plant’s characteristic changes.

Thus, as a result of considering the three most interesting
cases involving changes in the characteristics of the control
plants—changes due to the effect if external disturbances, which
could be measured, those due to external disturbances that did not
appear to be capable of measurement, and those which resulted
from plant characteristic changes in the course of operation
that were independent of external disturbances—-methods
were suggested for designing structures that would provide for
the independence of the plant’s selected operating conditions
from possible external and internal effects on it, and, con-
sequently, the -structures obtained proved to be self-adjusting
system structures.
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Y(p)= kwl (p) [xinput (p)_xoutput (p) W3 (P) y (p) — W3 (p) CF (p):] (35)

* Eqn (35):
** Eqn (37): W5 (P) [k 1(P) Xinput (P) = kW (P) Xourpue () — w3 (p) kw (p) CF (p)
Xoutput = 1+kW1 (P) W3 (p) .
F
kw, (p) W (p)

Xinput > > Xoutput

ws (p)

<

Figure 1.

w3 (p) CF (p) (37)

q ‘ xoutput

W3 (p)

Figure 2.
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A Method of Optimal Control Prediction
F.B. GULKO and B.YA. KOGAN

. Introduction

In view of the increasing demands which are made on the
quality of automatic control processes, more and more use is
being made of optimal control systems, particularly of a wide
class of time-optimal systems.

The development of time-optimal systems is at present badly
hampered by the difficulty involved in designing the controlling
part of the system, which, except for the simplest cases of
second-order linear plants, involves the use of multivariable func-
tional generators, or of complex boundary-problem computers?.

Because of this, there has recently been a search for new
approaches to the design of optimal control systems. In this
connection mention should be made of the work of Coales and
Noton?, who proposed that search of the switching moment of
the control action should be realized on the basis of high-speed
examination of a family of phase trajectories (future behaviours
of the plant), on the assumption that this switching will take
place at some future moment. Chestnut, Sollecito and Troutman
further, developed this principle®, substituting for search of the
switching moment a step-by step analysis of sections of the
phase trajectory, also obtained at high speed, on the assumption
that switching of the control action has taken place at the
current moment of time; the actual switching is executed when
the predicted trajectory passes through the origin of the coordin-
ates. Characteristic features of the above works are: (a) Predic-
tion by iterative computers of the set of future optimal
behaviours (trajectories) of the plant, with verification of each
trajectory to see whether it corresponds to the assigned boundary
conditions; (b) the use in the control system of a logic for
second-order plants, calculated for not more than one switching

of the control action. The latter confines the possible applica- -

tions of these methods to second-order plants, or to plants
reducible to the second order, having no supplementary con-
straints on the coordinates. It is, however, possible to remove
these constraints, at least for single-loop plants (or plants
reducible to a single loop) consisting of first-order elements,
linear or with monotonic non-linearities, by using the peculjar-
ities of the structure of optimal processes in such systems. In this
way it is possible to realize an optimal control system for a
plant of the nth order, having an optimal controller for a plant
of the (n-1)th order and a predictor. Applying the same principle
in succession to plants of the (n-1)th, (#-2)th, ... orders, up to
. and including the second order, it is possible to construct an
optimal control system for an nth order plant, the controlling
part of which will consist of a set of predictors.

Construction of Optimal Control Systems by Successive
Reduction of the Order and Prediction

Considered here are plants described by a system of dlﬂ'eren-
tial equations of the form:

X =f1(xq,u) _
Xy =f5 (%2, %) . 1)

xn =fn (xm Xp— 1)
where # = u () is the control action, while
lu@ <1

All the functions f; are assumed to be continuous and continu-
ously differentiable with respect to x, and x,—, while f; is
continuously differentiable with respect to #, and the partial
derivatives 0f;/0x,— and 0f;/du do not change sign throughout
the domain of variation of the variables in question.

Moreover, on some x;, there can be imposed constraints
of the form:

| <

specifying the permissible domain of states of the system in the
phase space. The problem is to synthetize a control system
which effects the time-optimal shift' of plant (1) from any
initial state to any assigned equilibrium state.

To solve this problem use will be made of a property of the
structure of optimal processes in plants of type (1), namely that
the trajectory of the optimal process~consists of successive
sections, on each of which the conrz:)f corresponding to it
coincides with the optimal control fora type (1) system having
an order lower by a unity than the initial one. For example, if
by some means it is possiblé to ensure, for a (sn-1)th order plant
[without the last element in (1)], a control action which in
minimal time imparts to the coordinate Xp—1, an extremal value
(taking into account the imposed constraints), and which then,
in minimal time, transfers the plant to the assigned state (with
respect to the n — 1 coordinate), and if, moreover, the coordinate
X, reaches the assigned value at the final moment, then the
control action and corresponding trajectory of the whole
system (1) are time-optimal. The proof of this is given. by
Gulko* (for the case when constraints of the x; » type are lacking),
where it is shown that such a control action satisfies Pontryagin’s
Maximum PrincipleS.

Figure 1 is the block dlagram of an optimal control system

based on these principles. The scheme consists of three main -

parts: the plant itself with an optimal controller [for the (n-Dth
order], the predictor (P), and the logical gate (L).
The optimal controller in the plant assures optimal motion

" of the (n-1)th order plant towards the value of the coordinate

Xn— assigned by the logical gate L. The predictor is a model of
the plant together with controller optimal for the # — 1 coor-
dinate, the setting of which agrees with the assigned value of the
coordinate x,—;, operating iteratively at high speed. Obtaining,
at the beginning of every cycle of the solution, data on the state
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of the plant (the values of its current coordinates), the predictor
computes the value which will be reached by the coordinate x,,
if, starting from a given moment, the truncated (n-1) order
system is brought to assigned equilibrium state in minimal time.

The output signal of the logical gate uz, is determined by
the mismatch between the assigned value of the nth coordinate
Xp spec and its predicted value x,, preq, from the equation:

af,

— . .
Xy -1 S180 (xn pred Xn spec) *s1gn ox
n—1

Ur When xn pred # xn spec (2)
Xp—1 spec When xn pred = xn spec

With input of the specification X, spec @ mismatch arises between
Xpspec a0d Xy pred, @s @ result of which the logical gate L, in
accordance with (2), sends to the optimal controller a specifica-
tion for the variation of the coordinate x,—,, (taking into
account the sign of the mismatch). Moreover, the predictor
continuously calculates the value which will be taken by the
coordinate x,, if, at the given instant, the setting of the optimal
controller is switched: from X,—; t0 X,— spec. AS soon as the
value of x,, pred T€aches x,, spec, the logical gate will bring about
an actual change of the setting of the controller, after which the
system will adopt the specified position, under the influence of
the optimal controller. The predicted value X, preqa remains
unaltered over this interval of time.

The chain of reasoning employed for the synthesis of an
optimal system of the nth order can be used to synthetize an
(n-Dth order optimal controller for plant and predictor; that
is, recourse is made to a system with an (#-2)th order optimal
regulator and two predictors for the coordinates x, and x,—;.
Naturally, in this case, the predictor which works out the future
value of the coordinate x,—,, and which itself forms part of the
predictor for the coordinate x,, must operate at a higher speed
than the latter. Applying this method successively a further
n — 3 times, one arrives at an optimal control system con-
taining » — 1 predictors (Py, Py, ..., P,—) with their correspond-
ing logical gates (L,, L, ..., L,—), but containing no other
optimal controllers (Figure 2). It is a characteristic feature of
this system that the optimal nature of the calculated trajectories
in any of the predictors is ensured by the presence in the make-up
of any of them of other predictors which calculate the motion
of a successively abbreviated number of elements at ever-
increasing speed. Figure 3 is a block diagram illustrating the
method of synthesis of the predictors.

To solve a tracking problem by the method described,
recourse must be made to error equations, as was done by
Coales and Noton?, and by Chestnut et al.3.

Optimal Control of a Fourth-order Plant

To illustrate the method, Figure 4 shows the example of a
time-optimal control system for a fourth-order plant consisting
of four integrating elements. The system contains three predict-
ors: P;, P, and P;. Let there be supplied to the system at some
moment a ‘specification’ concerning the coordinate x,. If at

this moment the state of the system is such that, with optimal

alteration of the coordinate x5 to the specified value correspond-

* If no constraint x,_; is given, then the greatest value of the
coordinate x,_, that can be physically represented is introduced into
the logic block in its place.

ing to an equilibrium state (i.e., to zero), the coordinate x, does
not reach the specified magnitude, then as a result of the
mismatch between x; spec and X, preq the logical gate Ly gives a
signal urg, corresponding to the limit permissible value of the
coordinate x,, with the appropriate sign determined by the
direction of the ‘acceleration’ of the coordinate x,. If there is
a mismatch between wurz; and xg_pred, logical gate L, gives a
‘specification’ Ur, for the variation of the coordinate x,, and
logical gate L,, under the same conditions, gives a specification
ur, for a variation of the coordinate x, which switches the
control relay. After this the system begins to ‘accelerate’ with
maximum rapidity in the required direction, and at some moment
t; the value of x; preq becomes equal to the given value X, spec.
Starting from this moment, the coordinate x; must be zeroed
with optimal rapidity, so logical gate Ly changes the command
sighal urg to zero. In the same way, logical gates L, and L,
change the signs of ur, and uy,, and the first switching of the
command relay takes place, after which the system starts to
‘brake’ with respect to the coordinate x,. During the rest of the
process, X4 pred Will equal X, spec. When the value of xj pred
reaches zero, gate r, issues a command for optimal change of
coordinate x, to zero. This command enters the relay via gate L,,
and effects the second switching. After this, x3 preq remains equal
to zero. The third switching occurs in the same way, when
Xypred = 0. This last interval ends when x; reaches equilibrium
value (zero). Thus by the end of the process x3 = x, = x; = 0
and x, = X4 spec. If, in the course of the process, the predicted
value of some one of the coordinates, for example x;, reaches a
magnitude equal to the limit value prescribed for it by logical
gate L, the specification for x, will be switched to zero by the
gate L,, and the system will start ‘braking’ with respect to the
coordinate x;. At the end of this ‘braking’ process, x; reaches

its permissible value, and maintains it until the predicted value.

of x, reaches the specified value. In this case the process will
consist of a greater number of switchings, as follows from the
theory of optimal control®. The results of simulating control
processes by the proposed method are shown in the oscillograms
of Figure 5 (a), (b), and (c), which show processes for the cases
of no constraints on the phase coordinates, and the application
of constraints on the third coordinate and the second and third
coordinates together. Oscillograms of the outputs of the
predictors Py (4 prea) and Py (X3 pred) are also given.

If it is possible to realize optimal control of the‘;ﬁrst k
elements of the plant (k = 2, 3,...) in some other way, the
number of predictors can be reduced by £ — 1. The first of the
remaining predictors must include a model of the corresponding
optimal controller, the second a model of the first predictor,
and so on, as has been described for the general case.

Some Features of the Design of Iterative Analogue Predictors
\ -

A predictor is a high-speed iterative computer, operating
with acceleration of the processes (with respect to the plant).
Because of the need for a high iteration rate, while the require-
ments for accuracy are relatively low, the use of analogue
principles in the design of the predictors is most expedient.

The iteration rate (periodicity) is selected from considera-
tions of the increment of the predicted quantity permissible, for
reasons of accuracy, in a cycle of the solution. The time scale
is chosen with references to the iteration rate and the duration
of the processes in the plant to be predicted by the device.
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A predictor usually consists of the following main units:
an analogue of the relay device supplying the control action;
iterative analogue computing elements (linear or non-linear),
with.a wide pass band ; a memory element, which stores informa-
tion between cycles of the solution, and, finally, a control system,
which provides the necessary sequence of switching operations.

The analogue relay element is usually a flip-flop or a com-
puting amplifier with a restrictor in the feedback circuit or on
the output.

The amplifiers for the computing elements must ensure the
desired accuracy of operation, and must have low drift. For this
purpose, according to Polonnikov?, the most suitable is a direct
current amplifier with a zero drift compensation network based
on the ideas of Prinz. Figure 6 gives the structural scheme of a
scale computing element and integrator. Here in the RESET
cycle all the switches are closed, and because of the full negative
feedback the capacitor C;, is charged up to the drift voltage at
the amplifier output. In the ‘solution’ cycle the switches are
opened, and the compensating voltage across the capacitor Cy,
is connected in series with the voltage at the summing point.
Ordinary switches of the bridge type are used.

The memory element stores the solution at the end of an
operational cycle for the duration of the RESET period of the
next solution cycle. It can be constructed from a combination
of a computer amplifier, memory capacitors and sw1tches for
example.

The control system produces cycle pulses which control the
mode of operation of the switch, and can be constructed using
conventional multivibrators.

Conclusions

The theoretical possibility of constructing time-optimal -

control systems for nth order plants has been demonstrated,
using a set of predictors as the optimal controllers.

524/3

Such optimal control systems are synthetized according to
a definite pattern, on the basis of a mathematical analogue of the
plant. Elaborate calculations are not required, and the setting
of the control system is simplified.

The predictors used in the control system can also function
as ‘advisors’ to the operators in the case of manual control.
For third-order and fourth-order plants, the method described
can be realized with the aid of a comparatively simple apparatus,
which can be built with the technical means now available.

" The extension of the method to other, more complex,
optimal control problems will require further investigation of
the structural features of optimal processes, and the development
of very high-speed and reliable means of mathematical
simulation.
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Figure 6. Zero drift compensation circuit of coimputing elements.
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On the Theory of Self:tuning Systems with a Search
‘of Gradient by the Method of Auxiliary Operator

I. E. KAZAKOYV and L. G. EVLANOYV

Structure and Equations. of a Self-tuning System

-In many cases important in practice, automatic control systems
may be represented in the form of a generalized system illus-
trated in Figure 1. The object of control is charaterized by an
operator of ‘a given structure A4 (%), where 7 is a group of para-
meters for which a priori information is lacking. The system of
control is described by an operator B(£) which depends on the
group of parameters &; (( = 1, 2, ..., n) which may be tuned.
In actual systems, the aggregate of values of each parameter &;
forms a finite multitude &,. The input signals of the system are
X(?), the useful random signal, and Z(#), U(#), random-
disturbances.

The equations of the automatic control system are as
follows:

Y=AGn)[V+U]

V=B()e ON

e=X+7Z-Y

In order to assure high quality functioning of the automatic
control system it is necessary to achieve tuning of parameters
of the operator B(£) in the presence of variation of the char-
acteristics of the input useful signal X (#), of the characteristics
of disturbances Z(#), U(t), and also in the presence of variation
of parameters 7 of the operator of the object of control.

In order to conmstruct a circuit for self-tuning, an index of
quality I of the automatic control system is introduced. The
index of quality I is a function, or in the general case it is a
functional of tuned parameters. Ordinarily the index of quality
I is computed on' the basis of error & of the system:

I=Nf (&) @

where N is an operator or a functional, £ (¢,£) is a function of-

the error of the system depending upon the error & and the
tuned parameters &.°

In order to tune the parameters of the system use is made of
the broad possibilities offered by the method of steepest de-

In the particular case when the lower (upper) boundary of the
multitude &, is attained within Z,,

I,=extremumI (¢) 5) -

For a complete description of the circuit for self-turiing it is
necessary to determine the method of computation of the com-
ponents of the gradient from the quality index for the tuned
parameters. In the given investigation a method is.applied which,
in the following is termed the method of an auxiliary operator
Its essence consists of the following.

If the information on operators B(£) and A(n) is known
a priori, it is possible to construct a certain auxiliary operator
C (&,7m) whose application to the error of the tracking system
makes it possible to compute the components of. the gradient
vector.

The derivative 0.J/0&; is computed by the direct differenti-
ation of the expression (2) assuming that the operators N and
differentiations with respect to £; are commutative.

. 0450
T e T T ©

The derivative 0¢/0 .E;- will be calculated by differentiating the
system of egns (1). The derivative of the error ¢ with respect
to &; is equal to
O¢ oY
3= " 3E : -
& & : 4

- since the input signals X(z), Z (#) do not depend upon &;. The

derivatives of the output signal are computed:

oY B (é)

AN AN O ®

Excluding from -(7) and (8) bY/b&i and transforming, one
obtains:

aa 0B (é)

1 I
scending slope or gradient, a discussion of which is considered -1 +A M B©)] 4 (’1) ®
by. Feldbaum?. App]ymg this method for tuning parameters & . . .
one has: Introducing the designation

5 A gradI ' 3) '
6B ‘
where A is the scalar multiplier, and 5 is a vector function of the (é) (10)
velocities of tuned parameters. In accordance with the gradient s writ
method the self-tuning system assures the tuning of parameters one writes: 3
. . . M 6 .
E_for the optimal value of index or quality /. In the general case a_¢= —Ci(n,8)e 11)
Io=inf I({) or I,=s,pI(£) 4 or
L ey, ie4; grads=—E(n,§)a (12)
527/1
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where C (n,£) is an auxiliary operator-vector which is completely
determined by the operators A(#), B(£). Thus, the gradient of
the quality index for tuned parameters is determined by eqns(6)
and (11).

The method of auxiliary operator requires an a priori
knowledge of information on the system, and this somewhat
restricts its generality. However, there exists in technology an
area of applicability of the method inasmuch as the predominant
majority of created automatic control systems can be described
mathematically.

The advantages of the method are the absence of trial load
changes and the possibility of accelerating and simplifying the
process of computation of the gradient components. In self-
tuning systems with a search of gradient by the method of trial
load changes, a priori information on the object, other than the
knowledge of the band pass of the system, is not required. This
permits a correct selection of the frequency of the trial load
changes and constitutes the advantage of this method. However,

its basic shortcoming is the limited quick response imposed by .

the finite band pass width of the system. In the considered
method the band pass of the mathematical model of the system
(operator C) may be artificially broadened by changing the
time scale of the solution. The possibility of simplifying the
process of computation is based on the substitution for a com-
plex operator C of an approximate and simpler expression.
The auxiliary operator ,C (1,&) depends ypon the para-
meters of the object and the system of control. A typical case
is one of absence of a priori information on parameters 7. In-
formation on parameters of the object may be obtained on the
basis of application of a tracking system, certain aspects of
whose application were considered by Margolis and Leondes?:3.
The structure of the operator of model 4({) is based on the
utilization of a priori information on the object. The aggregate

of parameters { of the operator of the model is tuned for the

value 7. The circuit of the tracking model is constructed quite
analogously to the circuit for tuning. Introducing an index
of approximation J of parameters { into parameters 7,

J=L¢(e) (13)

where L is an operator for computing the index J, and ¢ (&;) is
a function of the error. The error is determined by the relation-
ship

e1=Yu()-Y (1) (14)

Here Y () is an output signal of the model determined by the
expression

Yy()=A4QV: (15)

The change of the parameteré of the model is carried out by
the method of steepest descending slope:
f=A gradJ (16)
where 4, is a scalar multiplier, and C is a vector function of the
velocities of the tuned parameters of the model.
In order to determine the components of the gradient one
applies the method of auxiliary operator:

Differentiating the relationship (14) with respect to £;, one has:

Y, 0 34(),
oL, L, o,

hence it follows that the auxiliary operator in a given case is an
operator-vector G({) with components

O¢,q

a—Ci_ —AQV="">

(18)

6, (C)—aAC(O (19)
Thus '
gradJ=L{ ¢( e G(g) V} (20)

Equations (13), (14), (15), (16) and (20) describe the operation-
of the tracking model. A useful output of the circuit of the model
is the aggregate of parameters of model {. For ideal operation
of the model { = 7. An actual model assures the attainment of
parameters { close to values %, and therefore, strictly speaking,

in the operator C it is necessary to replace parameters 7 by .

The complete structural diagram of the self-tuning system in
accordance with eqns (1), (3), (6), (11), (14), (15), (16) and (20)
is presented in Figure 2. The schematic diagram was proposed
by Evlanov.

The structure of the self-tuning system contains three cir-
cuits: the basic circuit of the system, the circuit of the tracking
model, and the circuit of tuning of parameters. The circuit of
the tracking model assures the reception of information on the
parameters of the operator o the object. In the following the
operation of the circuit of the . cking model is assumed to be
ideal, that is, { = %. The circuit i~ tuning the parameters as-
sures the tuning of parameters of thy control system in accord-
ance with the given optimal value of the quality index of the
system.

Investigation of a Self-tuning System a Quasi-stationary Regime

A typical regime of operation of a self-tuning system is the
case of a.change of parameters # of the operator A(n) of the
object and the characteristics of external random disturbances
X, Z, U which are slow compared with the duration of transi-
tional processes in the basic circuit of the system. In this case
it is permissible to consider the circuits of tuning parameters
and the tracking model on one hand, and the basic circuit on
the other hand,; as being autonomous, since the tuned para-

" meters £ and parameters # may be considered as constant during

the time of process control in the basic circuit. It is also assumed
that the tracking model carries out its functions in an ideal
manner. Under these conditions the process of self-tuning of
parameters & of operator B(£) is investigated in the vicinity of
extremum of the quality index 1.

The presence of extremum in the quality index I of the
system with respect to all or several of the tuned parameters is
an important property of the self-tuning systems which permits
them to be tuned for an optimal regime. If the error of the
system & or another characteristics does not possess extremal
properties, then it is possible to construct an extremal quality
index by artificial means depending upon the direction of
aiming of the automat. This will be shown below by an example

8_.]_= 0¢ (e1) 98_1 an of a typical tracking system. For the time being, however, it is
of; %ey 0O assumed that the ‘quality index I possesses extremal properties. .
527/2
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The random error & of the basic circuit can be expressed in

. the form
e=m,+¢°

where m, is the mathematical expectation, and ¢° is the centring
component of magnitude e. In the function of the error f(¢,%)

we shall also factor out the mathematical expectation

F(&8=Mf(6+1°(8)

| where M is the operation of mathematical expectaticn, f° {¢,£)

is the random centred component.

The quality index of control 1 lntroduced previously may‘

now be presented as:

I*=NI*+ Nf° ()

where the -designation I* is introduced for the statistical

quality index of control

I*=Mf(e %)

Computing the components of the gradient of the quality index

of control by parameters &;, one obtains:

% 0 0
or _ oI 0% om, af

optimal values &, and considering that

or*
I:aé } =&io =0 !

at the point of extremum, we shall obtain for the current

values of 0/*/0&; the expressions:

ort X 1| o%r* '
AR
0L /=1 2104388 )

Differentiating expressions (24) twice with respect to para-
meters &;, &; and utilizing a system of equations of the basic
circuit of control for optimal parameters.&;, of operator B(£),

one computes the coefficients

or*
)
in the form:

or os°
& o0& om, aéi f 0¢;.

Representing the statistical quality index I* of control in the
vicinity of the investigated extremum by a quadratic form in
terms of deviations u; = §; — &;, of parameters §; from the

527/3
Taking into account -also that

om, oe° 0

—ag-- -C; m::" ‘&?l— '—,CzB (29

the formula (25) is written for the components of the gradient of
the magnitude Iin the form: '

6f° 6f°

af° :
——N Z a;u;— amecim" C "+ N~ (30

Ly Y 9&
Substituting the expression (30) into formula (3), one obtains
a system of equations of the circuits of tuning of parameters &;
in a scalar form:
n 0 0 0
&=INY aju;— AN Z— of im,_,—/lNaf Ce +AN§——
j=1 a E aé
' (3D
From this one obtains a system of linear equations for the de-
termination of mathematical expectations of deviations m,, of
tuned parameters from the optimal values:
|

—I\N Z au i< éiO (32)

In order to determine random components of deviations of
tuned parameters u,° one obtains the following system of linear
equations:

u)—AN Y, uja;= ANI:af :IC Mg,
=1

_lNI:EE—O]O WS+ AN S (33)»

An analysis of approximate linear equations (32) makes it
possible to evaluate the stability of the process and to determine
the systematic errors of self-tuning of parameters &, In partic-
ular, if the basic circuit of control is stationary and possesses
astatism of the kth order, then for stationary random disturb-
ances Z and U, and for an additive component of the useful
signal X in the form of a polynomial of the kth order, the left-
hand parts of eqns (32) are stationary. In this widely encountered
case the stability of self-tuning of the parameters is characterized
by properties of c¢haracteristic equation. In this case the in-
vestigation of stability is carried out by ordinary means. In the

v general case the systematic components of the errors of para-’
meters are computed by equations: -

aI* a f(g ’g )
[66,65 ] M{ 0e2 7= (Cjoﬁo).(Cmso) ‘

+.af _—(fm ¢o) (C azf (805 &) : My )= Z g” 7 510 (T) dr - (34

—(Cio80)

0e0¢; where g” (t,7) are the weight functions of the system of eqns 32).
a f(a 0 €o) % f (e0s o) ) If &; = const., then the systematic values of errors of tuning
T 0f0f. Z0¢, —ar (C W 27 of parameters m, = 0. Dispersions of the errors of parameters
are determined on the basis of the system of eqns (33) by

where C;, (£,7) are the auxiliary operators (10) for optlmal applying.the theory of transformation of random functions®.
values of parameters &;,. From the analysis of stability, duration of transitional pro-
Introduce the designations: cesses of tuning, and evaluation of the precision, one chooses
1 |: 2y :] the coefficient 2 and also other characteristics of the circuits of

A tuning.
5 (28) . . . .
&9 1o . The final evaluation of mathematical expectation of the

0Ci080) +

j0€0) +
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error in the basic circuit of the system under the action of
circuits of self-tuning is obtained by the formula:
n
m€=m£o+ Z mai . (35)
i=1
where m, is the mathematical expectation of the error of
control ¢ for an optimal value of parameters.
The magnitudes m,, are determined by the expressions:

mei = Cio (60) [cimm]
where C;, (&) are the auxiliary operators for optimal values of
parameters &, and the magnitudes b; are equal to

6 .
b= 2] m, 36)

The evaluation of dispersion of the error in the basic circuit
is computed by the formula:

n n
D,=D;+2 ) ket 3. ki, (37
i=1 i, j=1
where D, is the dispersion for optimal values of parameters ioo
K.y ep Ko, are the coefficients of correlation of random com-
ponents of the error of control &2 and the magnitudes &,° are

equal to
8? == u? [Cio (50) mco] (38)

Linear Tracking System with One Tuned Parameter

‘The application of the method to a linear tracking system,
with one tuned parameter, is now described. In tracking systems,
as a rule, the index of quality of control is assumed to be the
second initial moment of error &. This magnitude does not
possess extremal properties with respect to parameters & corre-
sponding to the change of input random actions X, Z, U.

Now consider an example of a tracking system having the
following characteristics: 4(7) = %, B(&) =&, X = at, U =0,

D B
m. = =_Z
and values of parameters given by 7,=10, a=0,1, D,=10"%,

I = 100. The second initial moment of error ¢ in a stabilized
regime is equal to: i

L ¥ (39)
*T el Ein+ B

This relationship has no extremum with respect to parameter &;.

In the theory of optimal filtration the magnitude &* =
¢ — Z =X — Y is considered as an error. The second initial
moment of this magnitude possesses extremal properties. Thus,

u?d§r the conditions of the preceding example the magnitude
o« 1S equal to:

(12 + D 211151
&ni & +B
This function has an extremum with respect to parameter &.
It is possible to measure directly the magnitude ¢* in tracking
systems using a priori information on the statistical properties
of the input useful signal and the disturbances. In practice it is
possible to measure the error ¢ and the signal Z;, = Z; (Z,X)
related to Z. For instance, the function Z; may be obtained by

*
o2, =

(40)

filtering with special filters the input signal X 4+ Z and utilizing -

the information that the spectrum of the frequencies of the
disturbance Z, as a rule, is substantially broader than the spec-

. trum of the useful signal X. Then the function Z; will possess

characteristics which are close to the characteristics of the
function Z.

Measuring the magnitudes ¢ and Z; it is possible to formulate
artificially a quality index having an extremal characteristic with

. respect to coefficient of amplification &, of the correcting circuit

B(£). For this the function of the error is assumed to have the
form:

[ = +y(¢)Z] (41)

The function y(&;) may be chosen in a specific case, for instance,
from the condition of proximity of the extrema of functions
M [e— Z)? and M [¢% + (&) Z% with respect to parameter &
for statistically prescribed input signal.

As an illustration of the method of prescribing a function
w(&,) let us consider the case of good filtration when it is possible
to neglect the component X in function Z,;. Let us determine
w(&;) = v&;, where v is a constant coefficient computed from
the condition of proximity of the values of parameters &, for
extremal values of the functions & = Me2 + v§; D, and oy =
M(e— Z)2. '

In Figure 3 there are presented graphs of functions & and &,
corresponding to the minimal value and computed for the
preceding example. For » = 0-1 the minima of the functions
(curves with an index 1) coincide closely, and the optimal value
of parameter &,, = 3-0. The change in a sufficiently broad range
of probability characteristics of disturbance Z, useful signal X,
and parameter # leads to a distortion of the form of the curves
& and «f However, their minima coincide, but are not reached
for other values of parameter &, as shown in Figure 3. In
Figure 3 the index 2 denotes curves for D, = 10~% and the pre-
vious values of other parameters.

In Figure 4 there is shown a schematic diagram of a linear
tracking system with tuning of the amplification coefficient &,
for y(&;) = »&;. The function Z; is separated with the aid of a
band pass filter or a filter of high frequencies. Then the signal is
supplied to a square wave generator and a circuit with amplifica-
tion coefficient »&;, and then to a low frequency filter. Now
consider the quasi-stationary regime of self-tuning of para-
meters. Eqn' (31) of tuning of parameter &, stated with respect to
deviation U, assumes the form:

[(TD+1)D—Aa,]u;=—22m,[C1,(0)+Cyo(D)] €0

—D&éy+2vm,Z° (42)
where

a1=M{[C1o(D)88]2+[eo (Cfo (D)ﬁg]}>0 ' 43)

From these one obtains the following equation for the de-
termination of mathematical expectation m,; :

(TD*+D—JAa)m, = —DE, . (49

For 2 < 0 the stable process of tuning is assured. When one
determines the centred random component %, one obtains the
equations:

[TD*+D—2a,Jul=—22im, [Cio(0)+Cyo(D)] €]
+2Avm, Z3 N CN))
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The magnitude m,, may be set equal to zero by proper selection
of the corresponding filter. Taking this into account and also
" utilizing expressions for ¢, in terms of X° + Z° one obtains
from eqn (45)
ul =0, (D)(X°+2°% (46)
—22m, [C10(0)+Cy0(D)]
(TD*+D—Ja,)[1+A(D)By(D)]

where

(D)= (47)

In this case, for computing the dispersion of parameter #; in a
stabilized regime, one obtains:

(48)

where S, and S, are the spectral densities of random: functions
X and Z. For &), = const. the magnitude m,, = 0 in the sta-
bilized regime: In this case the systematic error of a following
system with self-tuning in a stabilized regime .of operation is
equal to m, = m,,, that is, equal to systematic error for an
optimal value of parameter &, The random component of the
error of following is equal to:

80=

o b= P s@ @l

—

1
1+A(D) B, (D)

b,A(D)
[” T 4(D) By D)

(X°+2% (49

@, (D)]

where the magnitude b, according to formula (36) is given by

_0B,($0)

bij=—7>—"—""m
! 65104 i

In computing the dispersion of error & one obtains the formula:
d

o b, A (io) . 1
D.= N ol S A -
: _[_«, [1+1+A(iw)B(iw)®1(’“’):| 1+ A (i) B (iw)
| (51)
The calculations carried out for a tracking system (Figure 4)

[Sy(w)+S. ()] dw
having the values of the preceding example for 4 = 105, T= 1-0,
and the optimal value of parameter &,, = 3:0, show a sufficiently

(50)

.

2
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good effectiveness of tuning. Thus, the mathematical expectation
of tuned parameter ¢, is equal to my, = &;,, and the dispersion
of the error ‘of tuning computed by formula (48) is given by

. Dy = D,, =4 x 107". From these calculations it follows that

the maximum relative error of tuning the parameter &, is equal
to 6:3 x 10~2, per cent. As regards the error of tracking by the
following system, the mathematical expectation of this error in
tuning coincides with the value of this magnitude in an optimal
system m, = m, = 0-33 x 1072 .

The dispersion of the error of tracking in a self-tuning system
computed by formula (51) coincides with a precision to three
significant figures with a value of dispersion of the error of
tracking in the optimal system D, ~ D, = 2-31 X 1075, Thus,
in the considered example the self-tuning system with the utiliza-
tion of the method of auxiliary. operator assures an effective
tuning for the minimum of the second initial moment of error
in the presence of random disturbances.

Conclusion

The considered scheme -of a self-tuning system may be
effectively utilized both for the direct control of gbjects and the
synthesis of automatic control systems during their design. The
advantages of the system of self-tuning utilizing the method of
auxiliary operator are: relative simplicity of achieving tuning
circuits, effectiveness of operation in the presence of disturb-
ances, and the possibility of obtaining high values of quick -
response. -
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One Self—adjusting Control Systéms Without Test
| Disturbance Signals
E.P. POPOV, G.M. LOSK UTOV and R.M. YUSUPOV

Statement of the Problem

In this paper, the term ‘self-adjusting control system’ means a
system which performs the following three operations:

(1) Measures by means of automatic search or computes
from the results of measurements the dynamic characteristics
of the system, and p0551bly the characteristics of the disturbances
as well. i

(2) On the basis of this or that criterion deﬁnes the controller
setting, parameters or structure needed for calibration (or opti-
mization). :

(3) Realizes the resultant cont_rollef structure, parameter or
setting values.

Many studies of the theory and practice of self-adjusting

control systems for stationary controlled plants have so far

appeared in the world literature. There have also been con-
tributions on self-adjusting of quasi-stationary systems. But there
is almost a complete lack of contributions dealing more or less
specifically with problems of synthesis and analysis of self-adjust-
- ing control systems for essentially non-stationary controlled
plants. Morecver, as far as the authors are aware, even in the
case of stationary and quasi-stationary systems, the process of
self-adjustment is frequently effected solely on the basis of an
analysis of the dynamic characteristics of the system, without
taking into account the unmeasured external disturbances acting
upon the controlled plant. At the same time it is obvious that
external disturbance, besides the dynamic characteristics of the
system, determines the quality of the process of control.

Another drawback of many of the self-adjusting systems in
existence and proposed in the literature is the need to use
special test signals to check the dynamic characterlstlcs of the
system.

This paper proposes, and attempts to valldate one of the
possible principles for the creation of a self-adjusting control
system for a particular class of non-stationary controlled plants.

The main advantage of the principle in question is the
opportunity it provides to take account of both internal
(system parameters) and external (harmful and controlling
disturbances) conditions of operation of the system. In contrast
to the seif-adjusting systems known, a system created in accord-
ance with the principle proposed will make it possible to obtain
automadtically the fullest possible information about the process
under control without the use of test signals.

For the operation of a self-adjusting control system created
on the basis of the principle proposed, a mathematical model
-of a reference (calculated) control system must be constructed.
A ‘reference system’ is understood to be a system the controller
of which is designed in accordance with the requirements on

the quality of the control process, with the assumption that the
mode of variation in time of the system’s parameters as well as
the disturbance effects is known. '

The structure of the mathematical approximation of the real
process is selected to match that of the mathematical model of -
the reference process. The self-adjusting system operates in such
a way as to ensure continuous identity between the mathematical
approximation of the real process and the model of the reference
system. In this connection, the problem is posed of making the
mathematical approximation of the real process as close as
possible to the model of the reference process.

Without loss of generality, the case of control of only one
variable is considered, which is denoted by x, and the correspond-
ing reference differential equation is written in the form

n-1 m

g+ Z ai () x’ = Z b(D) S 1

The real process is approximated by a linear differential equation -

“of the same structure:

n—1

XM+ 3 g, () x®
i=0

t=t5,x7 (tg)= x%c))

§j bm (1) £ )

(i=0,1,..,n—1)

The operation of the proposed seif-adjusting control system
will be examined in accordance with the sequence of the process
of self-adjustment, indicated at the beginning of the definition.

General Case of Determination of the Dynamxc Characterlstlcs
of a System

In order to create an engineering method of determining the
dynamic characteristics of non-stationary systems in the construc-
tion of a self-adjusting control system, this paper proposes the
use of the methods of stationary systems. For this purpose, the
non-stationary system (1) is replaced by an equivalent system
with piecewise-constant coefficients. (The methods of stationary
systems are used on the intervals of constancy of the coefficients.)
The transfer from a system with variable coefficients to one with
piecewise-constant coefficients is effected on the basis of a
theorem which can be formulated with the assistance of a
number of the propositions of the theory of ordinary differential
equations. In accordance with this theorem, the solution of a
differential equation of form (1) with piecewise-continuous
coefficients (a finite number of discontinuities of the first kind
is assumed) can be obtained with any degree of accuracy in a
preset finite interval (4, T;) by breaking down the latter into
a finite number of sub-intervals. (#x, 7x+;) and replacement of
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the variable coefficients within each sub-interval by constants,
equal to any values of the corresponding coefficients inside or
~ on the boundaries of the sub-intervals under consideration.
In the general case, it is expedient to effect the breakdown

process by the method of multiple iteration of solutions on a -

high-speed computer.’

Let the differential equation with variable coeﬂiments @

be: approximated by an equation with piecewise-constant
coefficients.
Then, for ¢ € (tx, tk+1), one may write

n—1_ ’ '
E oG :
P+ Y a;x"g)= z bix /O (3)
. i=0 i=0
In accordance with differential equation (3), the real process
is approximated by the equation

n—1

XD+ Y a4 x®
i=0

z:b o @

As the dynamic characterlstlcs of the system at the first
stage of operation of the self-adjusting system on each interval
(tx, tx+1), the coefficients ax ( = 0,1, ..., n— 1), b (. = 0,
1, ..., m) are defined.

The simplest way to define these-coefficients lies in deﬁnlng

the values of x and f and their corresponding derivatives at the .

points.tg = Ty, Tg, +.., Ts = tk+1 — AL,

By substituting these values into eqn (4), one obtains for
each interval (fx,tx+;) a system of S algebraic dissimilar
equations for defining the searched coefficients.

In practice it is not always possible to measure the disturbing
effect f and its derivatives. Therefore, in the general case, the
above-mentioned method of defining the coefficients a;x and b;x
cannot be directly employed.

This difficulty may be avoided in the following way. The real

process is approximated, not by differential -eqn (4), but by a

differential equation of the form
n—1 . m
0+ Y agx®= Zo b f© - ®
i=o i=0

In eqn (5) the disturbing effect and its corresponding derivat-
ives are taken to equal the reference values. This avoids
the need to measure the real disturbance f, and makes it
possible to use the above-mentioned means of defining the
coefficients of the differential equation approximating the real
control process. The non-agreement of the real disturbances
with the reference ones are taken into account through the
coefficiénts a;x and b;x. Therefore dashes are placed over them.
" In the general case X® % x®(i=0,1,...,n) ie., there
is an approximation error. In view of this, in the transfer from

eqn (4) to eqn (5), it is necessary to evaluate the maximum

possible value of this approximation error, using -for this
purpose the assumed values of the limits of varlatlon of
disturbance f.

If for some class of controlled plants it can be assumed that
.in the process of operation only scale of the disturbance changes,
i.e., the equality .

FO=Cxfr (9, te(txatx+1) : (6)

where Ck is the random scale of disturbance, is satlsﬁed then

the approximation error is absent, and the connection of the
coeﬂicwnts of eqns (4) and (5) is expressed by the equalities:

) alK d,K(l—O 1 —1)

byx=Cg b (i=0,1,.. @
Equation (5) is used (henceforward, to simplify the notation,
the dashes over the coefficients and the variable x are dropped)
for definition of the coefficients a;x and b;k. It is assumed that
measurements x, x’,...,x(™ are performed at the points
K =Ty, Toyeeny TS = tK+1 — Ar. ’
The Values of f, fg, ..., /5™ are known. Then, for the
definition of (n + m < 1) desired coefficients in each interval
(tx, tx+1) one obtains the following system of S algebraic
equations, which will be written in abbreviated form thus:

Z x(l) (11) aix—

., )

m
Z e (Tj) bx=—x"(r) (j=12,...,5)
®
It is not always expedlent to solve directly system (8) for
S=m+ n+ 1, since, on account of the existence of measuring
instrument ertors and random high-frequency control process
oscillations, ‘the accuracy of definition of the coefficients will
be very low. Moreover, for the same reasons,” system (8) may
be altogether incompatible.
To eliminate the case of 1ncompat1b1hty and to increase the
accuracy of definition of the searched coefficients the method of
least squares is employed® 2, In so doing, the problem of

_ approximation is also solved. When utilizing this method,

it is expedient to take S > m + n + 1.

“Using the method of least squares, the coefficients a;x, bk
are defined, minimizing according to these coefficients the
function s
L= .2-1 p(e)L;

J= .
where

L;= Z X(')(‘r,)a,x 2 D ;b K+x "(z;)

is the disagreement, and p (z;) are weight coefficients which
define the value of each measurement and, accordingly, of
each of equation of system (8).

The necessary condition of the minimum of function L is the
equality to zero of its first-order partial derivatives according to
a;g and b;x. Having computed the partial derivatives and
equated them to zero, one obtains an already compatible
system of m + n + 1 linear algebraic equations for the defini-
tion of m + n + 1 coefficients:

s
aa;:K—-jZ p(rl)L '—*0(1—0 1,..,n-1)
oL &)

Zp(‘c)L —0(1—0 1,...,m)
6b,K =0 -
Solving system (9) by known methods, one obtains the
values of a;x and b;x.
In certain cases the process of control at intervals may be
approx1mated by a dlﬁ"erentlal equation of the form

<">+ Z ag x© (10)

)=k (£)

/
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where -

PEx (t) Z sz S) ®

This coarser approximation will make it possible to reduce
computing time considerably by a reduction of the quantity of

searched coefficients; in the given case only the coefficients a;x

" are desired.

In the given approximation the deviations of the values of
real coefficients b,x and real disturbances f will be taken into
account in the system via the values of the coefficients a;x.
~ System (11) will be the 1n1t1a1 algebraic system for definition of
the coefficients:

n—-1 C
Z x(l)(?j)aiK=¢EK(Tj)—x(")(Tj) (=12,...,8)

i=0

(11)

For definition of the searched coefficients a;x by the method
of least squares, one minimizes the function . :

Li= 3 p@) L] (12

where .
n-1 .
L;= iZO xO(z ) aix + x"(x D=0 (T)

Using the necessary condition of the existence of a minimum
of function (12) for the definition of n, coefficients a;x (i = 0,
1,...,n — 1), one obtains a system of r algebraic equations:

oL, &
das z (,)L __0 (_01

ji=1

Ln—1) (13)

All the above discussion and the operations were performed
on the assumption that the values of the control variable
and the necessary quantity of derivatives at the moments
of time of interest are available. In practice, however, one is
usually limited to second-order derivatives.

In a number of cases real high-order systems may be
approximated by second-order differential equations, preserving
the description. of their main dynamic properties. But even in
the case of more complex high-order systems it is possible to
suggest a number of algorithms for defining the searched
coefficients, given the existence of a limited quantlty of derivat-
ives, some of which are as follows: _

(@) Derivatives of higher orders of the control variable can
be calculated with the assistance of a digital computer on the
basis of the Lagrange and Newton interpolation formulae or

according to the formulae of quadratic 1ntcrpolatlon (method

of least squares).

(b) If one integrates each term of eqns (5) and A0 n—q

times, where g is the order of the senior derivative of the control
variable, which one can measure in a system with the requisite
accuracy, then, taking the limits of integration #x, 7; (j =1,
2,...,8), one obtains the integral forms of eqns (8) and (11)
respectively. If reference values are given to the magnitudes
x =0 (tg), x ) (tg), ..., x "D (), in these equations,
then for defining the coefficients a;x (i =0, 1,...,n — 1) and
bk (i=0,1,...,m) it is sufficient to measure the derivatives
to the gth order

(¢) Practically all existing controlled plants and control
systems can be described by a set of differential equations, each
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of which characterizes one degree of freedom of movement and
therefore has an order no higher than second.

(d) Sometimes, to reduce the order of the derivatives required
for measurement, one may also take advantage of a number of
coarse assumptions in relation to the terms of eqns (5) and (10),
which contain derivatives of high orders. ‘

For example, in these equations the values of-the derivatives
xMm, x (=1 x(n—ea+D) can be assumed equal to the reference values.

(e) The coefficients of approximating eqns (5) and (10) can _

be defined without any recourse to algebraic systems (8) and (11),
if one uses the following method5.

Let the composition of the control system include an analogue
simulator, on which is set up a differential equation of form (5)
or (10). In this simulator. there is a controlling device, which
provides an opportunity to effect variation of coefficients a;x
and b;x in a certain way.’

The control system memorizes the curve of the real process
in the interval (g, tx+1 — Ab), and selection of the coefficients
a;x and b,x is performed on the simulator in such a way as to
bring together in a certain sense the real process and the solution
of the equation set up on the simulator.

When the quantitative value of the proximity evaluatlon

‘reaches the predetermined value, the magnitudes of coefficients

a;x and b, are fixed and extracted for subsequent employment
in the self-adjusting control system. Obviously the simulator
operation time scale must be many times less than the real time
scale of the system. Only under this condition can the requisite
high speed of self-adjustment be achieved. Practically any time
scale may be realized with the assistance of analogue compﬁting
techniques.

Automatic Synthesis of Controller Parameters

For the operation of the majority.of self-adjusting systems,
the system operation quality criterion is set in advance. For
systems constructed on the basis of the proposed principle, it
is generally expedient to use as the criterion the expression

-1
2
M Z (alK alK) + 2 (blK b ) (14)
This criterion generalizes both the methods of approximation
of the real control process expounded above.
To simplify subsequent operations, the following notations
are introduced.

box=aux; b1K=an+1,K’ e bux=0msinx

Expression (14) can then be rewritten in the form

__)n+m for (5)
7 |n—1 for (10)

On each interval (¢, tx+1) the adjustable parameters are so .
selected as to bring expression (15) to the minimum. The ideal,
i.e., most favourable, case would be one when M would reach
zero as the result of selection of the adjustable parameters. This
is not always possible, however. In the first place, not all the
coefficients a;x (i =0, 1,....,n,) are controllable. Second, in
multi-loop non-autonomous systems even the values of the
controllable coefficients cannot all be tuned up to the reference
values simultaneously, since the relationship of the coefficients

M= {j (aix—ain)*; (15)

i=0
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a; to the adjustable parameters, although usually linear, is
nevertheless arbitrary in relation to the quantity of adjustable
parameters, the sign and the coefficients with which these
parameters enter into expressions for a;.

The second difficulty may be avoided by means of successful
selection of the reference system or by complete disconnection of
the loops (channels) of control of the main variables, i.e., by
satisfying the conditions of autonomy. ‘

It is assumed that all the coefficients a; (i =.0, 1, ..., ny) are
* controllable (in practice the values of. uncontrollable coefficients
may be reckoned to be reference values). Then, for the coeffici-
ents a; one may write

a;=a;(K;,Ky, ... K3 Ty, Ty, o, Tys iy by 001
(i=0,1,...,n9)" -
where Kj, K,, ..., K, are the gains of the controlled plant;

Ty, Ty, ..., T, are the time constants of the controlled plant and
the controller, and 7, ly, ..., I, are the gains of the controller
(adjustable parameters).

Since the coefficients a; usually depend on the adjustable
parameters linearly, one may write '

a,-= Z /J,,'jlj'*’v,‘ (i=0,1,...,n0) (16)
ji=1

where

wi =t (K, Kyy oo, Ky Ty, T, .0, T

‘v,.=v,.(K1, oK Ty, Ty, ., T)

Using the necessary condition for the existence of a minimum
of function M, one obtains the following algebraic system for
determination of the setting values 4, /, ..., /.

aall((lla [2: st lr)

Zo[aiK(11a12>~-" r 1K] =0
i= . ol;

(j=12,...,8) ., 17

It is assumed that when the system is in operation, the
adjustable parameter values only change in accordance with
their computed values, i.e., at any moment of time one knows
the magmtudes of 1, Iy, ...,I Then, for the interval (tx, tx—)
until the moment of correction of the adjustable parameters in
accordance with expression (16), one can write:

aix= Z]#ijk lj,K—1+viK (18)
i= ‘

From system (18) one may determine the magnitudes of
My and »x (i =0,1,...,n5; j=1,2,...,r) since the values
of ag(i=0,1,...,ny) and I, g1 (j=1,2,...,r) arc known.

Taking into account eqn (16),. after substitution of the
values of Mk and v,k the algebraic system (17) for ccfining
Lk, bk, ..., l.xtakes the form

Realization of Adjustable Parameters

Block-circuit with a Self-adjusting System using a Digital Computer

The duration.of the intervals of constancy of the coefficients
of reference eqn (3), when a digital computer is used in the
control system, must satisfy correlation

tki1— k=T +T,+T;+At (20)
where T; = =~ At (S — 1) is the time required to carry out measure-
ments; T, = N/n, is the time required for the computations;
T, is the time of actuator generation; 0 < Ar < itg4) — fx;
Av = 7,4, — 7, is the period of measurements (j =1, 2, ..., S);
ny is the computer speed of action, and N is the number of
operations required to define coefficients Lx (j=1,2,...,7).

It is obvious that to ensure better operation of the self-
adjusting system, it is riecessary to reduce as much as possible
the magnituce T =T, + T, -+ T;.

Now the opportunities for reducing the time T3 are dealt

~ with. This question is directly linked with the choice of the '

actuator. Electromechanical servosystems with a considerable
time constant are usually employed as actuators at the present
time. But it turns out that it is possible to suggest a number of
purely circuit variants of the change of the transfer functions or
of gains of the correcting devices (regulators) of the system.

‘These inertia-less actuators are termed ‘static’. It is particularly

advantageous to produce static actuators with the aid of non-"
linear resistors (varistors), valves with variable’ gams (varimu),
electronic multipliers, etc.

Consider, for example, one of the variants of a static .
actuator based on an electronic multlplxer Let the made of
control have the form

y= Z ljx(j)
j=1

and let the jth adjustable parameter have the value /,° at moment
ty=! (start of operation of the system). While the system
operates in-accordance with the signals of the computer, the
value /; is constantly being corrected. -

Thus, at the end of the interval (fx, tx+1) one has

Lix=1"+41;x

r r
y=Y OxD+ Y Aljx?

i=1 i=1

(@D

Obviously each addend in the right-hand side of expression »
(21) can be instrumented with the aid of the circuit in Figure 1,
where EM is the electronic multiplier, and AD the adder.

The following are self-adjusting system computer operating
algorithms: when the real process is approximated by
differential eqns (5), the algebraic systems (9), (18), and (19);
when the real process is approximated by differential eqns (5),
the algebraic systems (13), (18), and (19).

It is obvious that in the general case it is more convenient
to solve the problem of self-adjustment according to the proposed

o " £ principle with the aid of a high-speed digital computer. It can
_Z Z Hijk lix+vig | —aix {ix=0 (19 be specialized for solving systems of algebraic equations.
Si=o b=l Figure 2 shows the block' diagram of a self-adjusting system
(j=1,2,...,1) with a digital computer.
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Some Particular Cases

* In the preceding sections the proposéd principle for creating

a self-adjusting control system for non-stationary objects was

expounded in general form. In practice, one may naturally
encounter cases when the given principle can be used in more
simplified variants. Several such opportunities are considered.

(1) Obviously, the entire theory expounded above can be
applied fully to stationary and quasi-stationary systems, which

are particular instances of non-stationary systems. In this case -

the durations of the intervals of constancy of the coefficients
(1%, tx+1) equal, for stationary systems

K=0,_tK+1—tK=t1—t0=TO—_to (22)
for quasi-stationary systems ) .
tx+1—tx=At, (23)

where Azp is the control time (duration of the transient process).

As can be seen from relations (22) and (23), in stationary and
quasi-stationary systems one is less rigidly confined to the time
of analysis of the real process and synthesis of controller para-
meters. It is therefore possible to define coefficients a;x and b;x
more accurately and to use criteria which reduce the self-
adjustment process speed, but make it possible to increase
the accuracy of operation of the system. Among such criteria

one may cite, in particular, the integral criteria for the evaluation

of the quality of a transient process®.

. For stationary and quasi-stationary systems the problem of
self-adjustment in accordance with the principle proposed above
may be solved as a problem of the change in position of the
roots of the transfer function of a closed system, i.e., the self-
adjustment problem may be solved in accordance with the
requirements of ‘the root-locus method, which is extensively
employed in automatic control theory. A feature of the use of.the
proposition of the root-locus method in accordance with the
principle under consideration is that the zeros and poles defined
by the coefficients a;x and b;x are fictions since they not only
depend on the parameters of the controlled plant and controller,
but also depend on real disturbances as well. -

(2) In practice, one may encounter cases when a controller
is required to ensure only the stability of a system in the course
of operation. As is known, the stability of linear stationary
systems is determined by the coefficients of the characteristic
equation. This proposition is also valid for certain quasi-
stationary systems (method of frozen coefficients).

Therefore to solve the problem posed (the provision of
stability), the control system must define the actual values of
the coefficients of the left-hand side of the differential equation
of the system and must sét on the controller such gains
factors as will satisfy the conditions of stability, for example the
conditions of the Hurwitzian algebraic criterion. On the assump-
tion that disturbance f is constant in the interval (fx, tg+,) the
coefficients of the characteristic equation of the system on this
interval are determined in the following way.

. The differential equation of the system for e (tx, tx+,) is

written in the form
-1

x4 Z ax xP=Fy

where Fg is in the general case the unknown rlght-hand side,

constant for ¢ € (fx, tx+;). The algebraic system for determining '
the described coefficients will then be written thus:

* tial equations with essentially variable coefficients by differential
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n-1

- (")(r)+2x("(r)a,K—FK (i=1,2,...,8) (24

Since Fx is unknown, but is constant in the 1nterval (tr, tg+1) it
is eliminated with the assistance of one of the equations of
system (24). For this purpose one uses the equation

n—1 -
Wﬂ+zﬁ%mm—ha<k®
i=0
After eliminating Fx one has:
n—1 . . .
Z [x(’) (7 )= —xC )(Tl)] Aig=— [X(") (Tj)_x(") ()]

(j=1,2,...,1 ~:l,l+1,...,S) (25)

By resolving system (25) directly with S = n + 1, or by the least-
squares method with S> n -1, one determines the coefficients

arg (=01, — 1), the values of which are used, if the nced
arises, for synthesis of the values of the controller parameters
which ensure the stability of the system.

Conclusion

The paper has expounded only the basis of the proposed
principle for the construction of a self-adjusting control system
in general form ard in certain particular cases. Studies are under
way on, problems connected with the approximation of differen-

equations with piecewise-constant coefficients, with the selection
of the type.of computer to operate in the self-adjustment loop,
with the dynamic precision of the self-adjustin system, etc. The
investigations which have been made allow one to hore that the
use of the principle expounded in this paper for the construction
of self-adjusting control systems will prove extremely effective in
many cases when it is expedient to use the natural oscillations
of the system, without introducing test disturbance signals.
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Optimal Processes in Systems with Time Lag
N.N. KRASOVSKII

Introduction

The problem of forming the optimal process input for a regulator
in a system with time lag of action and signals is considered in
this paper. The questions considered belong to the class of
problems of optimal control. These problems were first stated
and developed in the U.S.S.R by Feldbaum®. The mathematical
theory of optimal processes was worked out by Pontryagin

‘et al.%, on the basis of their Maximum Principle. Their studies

have given rise to a great number of works: for instance,
that by Rozonoer3, and also the Theory of Dynamic Program-
ming*, developed by Bellman and his colleagues on the basis of
the optimality principle and the functional equations which
follow from it, which embraces a very wide class of problem.
Reference can be made to the authors whose works, among
others, have a direkt connection with this paper®-18,

Reference can also be made to the works of those authors
who, among others, have studied optimal control problems in
after-action systems, and in more general systems with dis-
tributed parameters!9-22,

The present work originates from the studies of Letov23: 24,
and the statement of the problem adopted here is a generaliza-
tion, for systems with after-action, of the statement of the
problem given by Letov?. The problems for systems with delay
of the feedback signals considered below are related to problems
of dual control® or of the theory of adaptive processes26..

The solution proposed is based on the method of Liapunov
functions and the theory of stability of motion®” 28, developed
for equations with time lags®®, and modernized in accordance
with the principles of Dynamic Programming®. Statements of
the problems are given in this paper, and criteria of optimality
and the principles of solution are formulated. For systems
which can be described by a few actual equations, the explicit
analytical form of the optimal regulator is given. Approximate
methods for calculating optimal control are described, and
problems complicated by random circumstances considered.

Time-lag of Signals in the Plant

Consider a controlled system (Figure I) where z (f) is a
controlled vector quantity at the output of the plant 4, and £, a
scalar quantity, is the input of the regulator B, constituted
on the basis of information on the actual error x = z — 2° and
possibly also on the actual values of the load 7 (). The special
feature of the system is the time-lag of the signals in the plant 4

- (Case I), or of signals in the feedback channels (1) and (2)

(Case II), or of & in channel (3) (Case III). Each case will be
examined separately. If Cases I—III are combined in one
system, the statement of the problems and the solutions must
be combined accordingly.

Case I. Assume that the disturbed motion of the system is
described by the equation

dx :

—a7=f [t5x(t)sx(t_h1)a-'~5x(t~'hk),n(t)> é] (1)
where x is an n-dimensional error vector, #; is the time lag of
signals in the plant O < h; < h, i =1,...,k), fis a known
vector function of its own arguments, determmed by the structure
of the system, and 7 (¢) is the load or disturbance. Besides this,
a functional determining the quality of the process is given, and
there may be a restriction on the magnitude of the control
signal &,

The disturbed motion x (t) of system (1) with after-action,
with ¢> 1, >0 is determined, as is well known, by the
history x (y + 6) (— 2 < 6 < 0) of this motion. The initial
function x (¢, +0) (— 2 < 6 < 0) will therefore be called the
initial disturbances (with ¢ = #y). It is also convenient to con-
sider, as quantities describing the state of system (1) at instants
t > t,, and deterrining its future motion when v > ¢, sections
of the trajectories x(t +6) (— h < 6 <0). It is therefore
suitable to form the control signal & (¢) at each instant ¢ on the
basis of information on the whole of the realized trajectory
x(t+0) with — 2 <60 <0. In other words, analytic con-
struction of the regulator®® means finding £ in the form of a'some
functional & () = &1, x (¢ + 0)], determined on the curves
x(@+0)={x;(+0), —h<0<0,i=1,...,n} In future
it will be assumed that the argument 6 varies within the limits

— h < 6 < 0. The continuous functions x © or x(t+ 6) of - -

the argument 6 are assumed to be elements of a certain space X
with a matrix

(@) = max 1@+ ... +x2(0)*
Also used is the notation
X Ol =(x3 (0)+ ... +x2(0)%,
IxI=GF @O+ ... +x7 @)

Three problems are considered:

Problem 1. Find a control signal & = £9 ¢, x (0) such that the
motion x = 0 in a closed system (1) (that is, with & () = & (¢, x
(¢ -+ 0)) is asymptotically stable?® with respect to the disturbances
x%(ty + 0) (t, > 0) from a region

I OI<G, @

and such that for all 7, >0 and x° (¢, + 6) out of (2) there
holds a minimum

J [0, x°, E=min J [to, x°, £] RN )
¢ . :

Here

J [.t‘o, x°, &= ? o[t x (f, t0,x°%, &), E(®]de - @

to
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where w is a given non-negative functlon x (1, 1y, X, &) is the
trajectory of (1) with initial conditions’ fo and x° (t, + 0) and
a selected law of control & () = &[4, x, (¢ + 6)]. The control
signal & can be constrained by a supplementary restriction
&€ E (for instance, | & | < 1).

Problem 2. Find a control signal & = &%, x (6) assuring

a minimum of
Jr[to, x°, E]=minJ;[to,x% ] (0<t,<T) (%)
eX

where

T
Jr[te, x°, &} =J o[t tg,x% &), E(D]dt

to
+l/1 [X (T‘, tOs xO, é)] . . (6)
and T < oo is a given instant of time, while ||x° (, + O)|| < G,.

Problem 3. Find a control signal & = & [f, x (0)] assuring
minimum of

J o [tos x°,f°]=min J o Ltos x°,&] )

EeZ

where {x, (t, + || < G, and

J o [torx° when T— o0 )

L= hm
0
In Problems 2 and 3, as in 1, it is assumed that the initial
conditions x° and trajectories x (t, fy, x°, &%) do not go beyond
certain previously fixed regions.
The sufficient conditions of optimality of the control signal &°
will be formulated for Problems 1 and 2. i

Theorem 1. Let it be possible to indicate functionals
v[f,x ()] and & [r, x (6)], defined and satisfying in some
~ region ||x (9| < G the following conditions:

(1) The functional v is positive definite with respect to
[|x O] :

(2) The functional v admits an upper limit with respect
to [[x (OIl-

(3) The following' inequality is satisfied:
in f [v[t,x(0)] when ||x(0)| =G
% ()= G]=sup[v[t,x(6)] when |x(0)II<Go]

(4) Along trajectories of (1)* the derivative (dv/df); of the
functional v satisfies the condition «

(%)fo+w[t,x(t), €°]=2i§[<%>é+w[t,x(’)’5]]=0 ©)

in the region ||x (+ + 6)|| < G, and is negative definite with
respect to || x (9)]| in this region.

Then &°[t, x (r + 0)] is the optimal control signal for
Problem 1, and the following equality is valid:

v[to, x° (to+0)1=J [1o, x° (to+6),&%]

Note. Properties (1) and (2) generalize in a natural way the
corresponding properties of Liapunov’s functions?’ that is (1)
means that there exists a function w (r) > 0 with » % 0, such
that v [, x (0)] = w (x (O]) with [lx @] = llx O, and @)

(10)

means that there exists a function W (r) satisfying the conditions
W (©0) =0, v [, x (0] < W(||lx (O. If in Problem 1 the region
G, encompasses any possible large initial disturbances x,
(the problem of optimal stabilization as a whole), the region G
must coincide with the whole of the space X, and (1) is replaced
by the condition

lim o[, x ()] = co when [x(0)]| 00, x ()= Ix (O)]

uniformly with respect to f.

The demonstration of Theorem 1 is made by reasoning
typical for the theory of stability of motion®, but taking into
account the principles of dynamic programming?.

_The sufficient criterion of optimality for Problem 2 is for-
muiated as follows:

(1)

Theorem 2. Let there exist for every |x° (¢, + 8) < G, and
to € [0, T) an admissible control signal & (5, that is, a control
signal for which the trajectory x (¢, f, x°, &) may be prolonged
in some finite region G until the instant # = T, and therefore the
integral (6) is finite. If one can find in the region G functionals v -
[t, x (6)] and &° [¢, x (0)] satisfying conditions (9), and ’

o[T,x ()] =¥ [x(0)] (12)

then £° is the optimal control signal for Problem 2, and the
following equality is valid:

0 [0, x° (to +0)] = J 1 [t0, x° (1o +), £°] (13)

The solution of Problem 3 can be obtained by passage to the
limit from the solution of the problem when 77— 0.

Note. If the load (f) is random or the system is subject to
random disturbance, Problems 1 to 3 are modified as follows:
integrals (4), (6) and (8) are replaced by their mathematical
expectations (the conditional mathematical expectations for
the appropriate initial conditions 7o, x° 7°), and in Problem 1
the requirement of stability is replaced by the requirement of
stochastic stability®. In this case seek the control signal & in
the form of a functional &°[t, x (t + 0), n (¢t + )], where
— h<6<0 and — h* <7 <0, while 2* =0 is the value
of the maximal after-action for the probability process 7 (t)
(if 7 (f).is a Markov process; then #* = 0). The criteria of
optimality given above preserve their form, with the modifica-
tion that v must here also be a functional v [t x(0), n (r)],
and the derivative (dv/dt)é is replaced by its average value®
(dM{p}/dD),.

Conditions (9) reduce to partial derivative equations of
a special kind. The solution of these equations in the general
case is cumbersome; it is possible, however, to indicate a number
of cases when an explicit form can be found for the optimal
control signal, or when a numerical procedure for its deter-
mination can be indicated.

The results of applying the proposed criteria to systems
described by equations of actual form will be illustrated.

Let the transient process be described by the linear differen-
tial equations

v Z a; (N x;(D+ Z ;i (0 x; (t—h)+b§+al11(t) (14)

where a;;, ¢;;, a; and b; are known functions of time or constants.
First assume that % (f) = 0, and then consider Problem 1 for
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system (14), assuming that

o0 n
J=J |: Y x? (t)+)»£2(t)]dt, A>0—const (15)
to Li=1
any initial disturbances x° (¢, + 0) are admissible.

Here the functional » from Theorem 1 must be chosen in

the form
B n

o[tx(O)]= ¥

i j=

) [dij ®x;(0) X ©)
+2xi(O)J‘O Bii(t,0)x;(60)do
-~h :

+JO JO 7, (5,0,9)x,(0) x,;(r)dbdz]  (16)
—hd ~n :

which generalizes in a natural way the Liapunov function
widely used in stability theory, as a quadratic form. If for every
initial condition x%, 7, there exists an admissible control signal
& (1), that is, a control signal (¢) for which integral (15) converges
uniformly with respect to #,, then there exists a functional v (16)
satisfying the conditions of Theorem 1. From this it is directly
concluded that in this case there exists an optimal control
signal.£® having the form

&L x(t+9)]
= '=i1 [#i ®x;()+ j

0

v;(t, D x;(t+9) d9] an

Conclusion

The optimal regulator &0 in system (14) with condition of
minimum (15) is seen to be the regulator B, which applies to the
input of the controlled plant A4 at every instant 7 a .quantity
£ (17), worked out on the basis of a measurement of the
error x at the given instant of time ¢ and at previous instants
t — h < t < t, while the results of measurement:of the previous
errors x () = x (¢t + ¥) must be processed in the integrators
Jv; 0, ®) x; (¢t + 9) d¥. The control signal & depends linearly
conx (P N(— A< H <0

It is interesting to observe that for a system (14) with discrete
delay 2 > 0 the optimal control signal must be worked out by
an element with continuous distribution of the after-action
v; (¢, ©) over the whole of the time-lag interval — A < 9 < 0.

‘Now' let # (¢) == 0 be a known function of time. Consider
for system (14) the problem (2), where

. T n n
JT:[ [Z xf(t)+/lc.2(z)]dt+ Y Yixi(T)x;(T) (18)
to Li=1 4 g j=1

Here any restricted control signal & (f) is admissible, and the
following assertion is valid: a functional v satisfying the con-
ditions of Theorem 2 exists, and differs in form from the func-
tional (16) by the term

0

=5 6050+ [ a6x@® e 09

From this assertion follows the conclusion that in this case
an optimal control signal always exists, and differs in form from

529/3

the control signal (17) by a term §* = # (¢) which is a function
only of time .

Note. The conditions for -Problem 1 Solvability for sy-
stems (14) and (15) reduce to the possibility of constructing an
admissible control signal & (f). Here, as also in the case of
systems without delay, the question is connected with the
conditions of controllability of the system!® 81, System (14)
(with # (f) = 0) will be called fully controlled in the interval
[t, 1] (t; > to + h) provided that for every initial condition
x% (o + 0) there exists a continuous (piece-wise-continuous)
control signal & (¢) such that x (7, t5, x% &) = 0 when #;, — & <
< t < t,. The conditions of controllability, as in the case with-
out delay3?, can be investigated starting from the ‘L problem’. If
system (14) is fully controllable in every sufficiently long section
of the ¢ axis, then it is optimally stabilizable in the sense of
Problem 1. It is also observed that such stabilization is certainly
possible if system (14) is asymptotically stable with & = 0, or if
the delay # > 0 is sufficiently small (or if the ¢;; are small), and
for the system dx,/d¢ = Za;; x; + b;é the conditions of full
controllability are fulfilled: the vectors {b;}, {llasll{b;:}},
ooos {lla|""*{b;}} are linearly independent. The conditions
of solvability of Problem 1 for (14) and (15) can also be adscer-
tained in the process of solution, if the solution is sought by
passage to the limit from-the solution of Problem 2 for (14)
and (18) (with y; =0, n =0 and with T— ), which is
sometimes a convenient method in practice.

Now consider Problem 3 for system (14): accept that in (8)

n )
w = 2 x2 4 A &2 and assume 7 (f) to be a random Markhov
i=1

function (for definiteness, of the pure discontinuous or diffusion.
type). Moreover, assume that system (14) is subject to some
irregular disturbance of the white noise type, causing diffusion
spread of x (¢) in the time d¢ with a matrix of second moments
| M{dx; dx,-}|| = |loy; (1) dr.

The following result is obtained: if system (14) with % (f) =0,
is stabilized in the sense of Problem 1, then an optimal control -
signal &9 exists and has the form

&L, x(1+6),n(0]
;g[mmnanf

0

vi(t, D) x; (t+ G)dG] +x(t,n() (20)
—h
It is interesting to observe that the first term here tallies
with (17), and the random term x (¢, 7 (¢)) determined by the
actual values of 7 (¢) is the same as it would be if, with 7 > ¢,
the function 7 (t) were dct:rmined and tallied with the prediction
of its mathematical expectation M{n (r)/n ()} made according
to the actual value of 7 (7). The magnitude of the dispersion of
7 (f) and the quantities o;; (f) do not affect &% and manifest
themselves only naturally in the quantity M{ Joo[ty, x°, 7% £°1}.
As has been shown above, it is very laborious, in the general
case, to construct the functional from Theorems 1 and 2. The
following methods may be indicated for approximate its deter-
mination (and consequently that of &%): ‘the small parameter
method; approximate solution of the functional equation (9);
approximating v in the mean; replacing thé equations with
delays or the functional equation (9) by finite difference equa-
tions; replacing the equation with delays by a set of equations .
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for the Fourier coefficients of a section of the trajectory
x(t+06)— h <6 <0. These methods can be illustrated by
numerical examples.

Delay of Feedback Signals

Consider now the system of Figure I when there is no after-
action in the plant A4, but signals in channels 1—3 can be
delayed.

Case II. Let the motion of the plant 4 be described by the
vector differential equation

dx A .
a =S Lx®.n®,8]+¢ 2y
where x, 7, &, f have the same meaning as in the first part of the

paper, and ¢ is a disturbance of the white noise type, giving
rise to diffusion spread of x (¢) in the time d¢ with the matrix
IM {dx;dx;} = llo;; (DIl dt (22)

The problem is to minimize the quantities

JT=M{fTw [, x(®),E(D)]dt+y [x(T)]} dt  (23)

and
Jr

with T— o0

J,=lim (24)

0

The peculiarity of the case in question is that information
concerning the actual values of the error x (¢) and load % (¢) are
supplied by way of channels 1 and 2 with delays of #;, >0 and
hy > 0 (or either 4, > 0 or A, > 0) respectively (h; < h, hy < h).
In other words, assume that in the regulator B at the instant ¢
in the closed interval [0, T'] the values of the actual quantities
x (t — hy) and n (¢t — hy), where # (£) is a random Markov func-
tion, are known. Also assume that the regulator B is capable of
remembering up to the instant ¢ the signal & (¢ + 0) worked out
by it with — 4 < 6 < 0. Denote the set of magnitudes x (¢ — #,),
n@—hy) and §(¢t +0) (— h <0 < 0) by y(9), and x (— hy),
N (— hy), £(6) (— h < 6 < 0) by respectively y. The quantity
y (9) makes it possible to compose a probability description of
the plant 4 at the instant z. The quantities Jy (23) and J., (24)
with the chosen law of control £ may be regarded as functionals
with respect to y (#,), that is,

T .
M {J; w [t: X (t)s é (t)] dt+ 4’ (T)} =JT [tO’ yO (t0)> é] (25)

) J
Fm T—Tto=J°° [to, ¥°(t0), ¢]

(26)

It is therefore reasonable in this case to seek the optimal
control signal £° as a function of y (¢), that is, in the form of a
functional

Em=¢[Ly®] (27)

Call the admissible control signals the set of such functionals,
sufficiently regular to give a meaning to the solution of (21) with
& (¢) of (27), and, possibly, constrained by supplementary re-
strictions arising from the statement of the problem (for
instance, | £| < 1). Designate the set of admissible control
signals by the symbol 5. Now the problem can be formulated.

Problem 4. 1t is required to find a control signal £° belonging
to 5 which minimizes (25) for all »° belonging to Y, f, > 0.

Problem 5. Tt is required to find a control signal £° belonging
to & minimizing (26) for all y° belonging to Y,, #, = 0. Here ¥,

. is some region of the components y given in advance.

Denote by x (¢, ¥° (#,), £) the random motion of the system,
generated by the initial conditions y° (%) with a certain choice
of the control law; moreover, assume necessarily, with £, = 2 <
< t < ty, that the control signal £ (¢) tallies with that & (f, + 6)
(to + 0 = f) which is a component of y° (¢,).

Now formulate the criterion of optimality for Problem 4.

Theorem 3.1t is assumed that for all y°(z,) belonging to ¥, and

- 0 <ty < T there exists an admissible control signal & (f) (or

&=E&[t, y (O)D such that (25) has a meaning, is finite, and almost
all the realizations {x (t,y°(t), &), n(t,y°(ty), &t + 0)
(— h <06 < 0)} belong to Y, where Y is a certain region of
values of y. Let it be possible to find functionals v [#, ] and
&0 1, y] satisfying the conditions .

(1 o[ Ty (T)]=M{y [x(T, y(T), O]}

for all y (T") belonging to Y

@) <dﬂﬁ;{ U})fo +M{o[tx(ty(®),¢),¢}

=§mi=n [(%) +M{w[t,x(y(), é)? 6]}]=0 (29)

for all y (f) belonging to Y and all ¢ in the closed interval [0, 7.

Then £° [¢, y ()] is the optimal control signal for Problem 4
and v [ty, q° (t,)] = min Jr [to, ¥° (25, £1.

The solution of Problem $ is obtained by passage to the
limit from the solution of Problem 4.

The results of applying the given criterion to a system
described by equations of an actual form are illustrated.
Consider Problem $ for the system

(:1?= Y, ay(x,O+b+an®+¢  (0)
i=
with the condition of minimum (26), where
T n .
JT=M{J‘ l: Y oy x(t) x}(t)+l§2(t):]} de.
to Li, =1
+ lel’ijxi(T)xj(T) (31)
i,j=

The delays along both channelé 1 and 2 are assumed to be
equal to 42> 0, and it is admitted that any initial deviations
x%(ty — k) and 5 (t, — k) belong to (1, 1)

With sufficiently wide assumptions concerning the character
of the Markov probability process % (£) and with the condition
of full controllability of the system dx;/dr = Za;; x; + b; &,
the functionals v [, y] and &° [, y] satisfying criterion (21) can
be found, and passage to the limit with 7— oo can be carried
out. Problems 4 and 5 can also be solved. In addition the
following result is valid. -
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Results

The optimal control Signal for Problems 4 and 5 stated with
conditions (30) and (31) has the form

L0y O1= T u@x@-h+s[n-h]

0
+J o[t 0]&[t+6]d0 (32)
~h

The term » is determined at every instant ¢ with respect to
the realized # (r — h), but to calculate it one must know the
prediction M{#n (t)/n (t — h)} with T > ¢ — h.

Here the functional » {#, y (¥)] has the form of the sum of the
quadratic and linear functionals of x; (¢ — /) and E t+ 6)
with coefficients dependent on % (t — A).

Analysing the resulting solution £° the following conclusion
is arrived at: the optimal control signal £° chosen here at every
instant ¢ is the same as would be obtained in a deterministic
system and without delay of the feedback signals; however here,
instead of the known quantities x, (¢) of the deterministic system,
their best mean square predictions M {xi O)x (@t —h),n@—=h),
&+ 6) (— h <0 < 0) must enter into the control law, and
the deterministic load 7 (z) (v > ¢ — h) is likewise replaced by
the mean prediction M{# (v)/n (¢t — h)}.

Case III. This case reduces naturally to the previous one,
and it is not considered individually.

When several of the cases analysed are combined in one
system, the statements of the problems, criteria of optimality
and results are combined correspondingly.

In conclusion it is observed that CaseIl can be included in the
more general case when incomplete information is transmitted

the feedback channels 1 and 2. For it can be assumed along indeed -

that at the instant ¢ there are applied to the regulator B signals
¥ () and { (1), statistically connected with x (/) and 7 (¢) (in
Case I, {y (0, L (O} = {x(@t— k), n(t—h), £+ O)}) and
an optimal control signal in dependence of these signals can
be constructed. The foregoing reasoning and conclusions are
generalized to this more general case. The quality of the process
depends on how much the processes {y'(#),{ ()} and {x (9,
n (t)} are connected informationally, or, in other words, how
far the processes {x (f),n (9} are observable!? with respect

to {y (0, (1)}
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Problems of Continuous Systems Theory of
Extreme Control of Industrial Processes

A. A. KRASOVSKI

Many continuous industrial processes lend themselves to the
following plan. There is available some quantity # of adjustments
or controls -of machines, apparatus, regulators securing an
industrial: process. The flow of the industrial process and the
parameters depend on the coordinates of the adjusting or
control elements (adjustment parameters).

Together with the controlling adjusting element coordinates
the output parameters are affected by various disturbance factors
(change of material parameters, wear of machines and tools,
temperature and moisture variations and other factors).

The output parameters are controlled continuously or dis-
cretely (but with sufficiently small intervals of discontinuity by
special measuring devices—output parameter information
transmitters (Figure 1) influenced by disturbance factors and
also by random variations of adjustment parameters. The output
parameters are subjected to continuous variations.

Even though a practically ideal adjustment of the machine
system, securing the industrial process, is initially attained, after
some time the disturbance factors will bring forth considerable
changes in the output parameters. In order to prevent the drop-
ping out of the output parameters from the established tolerances
(scrap output), adjustment and tuning of the machine system is
necessary. Various means of automation of these operations are
possible. If it is precisely known which parameter and to what ex-
tent it is affected by one or another controlling adjusting
element, the usual feedback principle may be used (regulation
by defiation). For this it is necessary first to smooth the
results of measurements in order to eliminate overshoots
of the system in the presence of small, random deviations within
the tolerance limits. Methods of such automatic processing of
information may be set up, based on the widely utilized methods
of non-automated statistical control2. The measured and
smoothed signals of output parameter deviations are conveyed
to the performing arrangements and cause changes in the
controlling adjusting element coordinates. Such systems are
sometimes called staistical autotmata3.

Undoubtedly the introduction of statistical automata will
prove to be an important step in the automation of industry.
However, a necessary condition of their application must be a
sufficiently complete a priori information about the character-
istics of the industrial process. In many cases this information
is absent, and even if it is available during the initial period of the
systems adjustment it loses authenticity in time, due to the
change in properties of the industrial process.

Under these conditions the application of usual, non-self-
adjusting . control loops (statistical automata) becomes impos-
sible. In these cases it is expedient to utilize an extremal control. .

possible schemes of extremal control systems with continuous
industrial processes and some questions of the theory of these
systems. It is a development of earlier work by the author?.

For the realization of an extremal control a quality
output (production) index Q is selected, having extrema at
wanted values of product parameters. Such an index may be,
for example, the sum of the squares of deviation of the output
parameters from the standard values. The quality index Q
is determined by a computer (calculating machine in diagram
Figure I) based on information transmitter data on current
values of output parameters. To secure the basic function of the
system-maintenance of the quality index at the extremum
level, search oscillations are necessary. Natural high frequency
random oscillations, as well as artificially produced oscillations
of controlling elements, may be employed as search oscillations.
Naturally the first method is preferable, since it is not linked
with any increase of high frequency fluctuations of the pro-
duction parameters.

In order to make use of natural oscillations as search oscilla-
tions, it is necessary to measure them. The measurement of
search oscillations is done by information transmitters for these
oscillations (Figure 1), which measure controlling element
oscillations and disturbance effects transmitted to them.

The measured search oscilations are transmitted to a
simulator or a dynamic model of the industrial process. The
purpose of the simulator is to transform the search oscillations
in the same manner as these oscillations are transformed in a -
real process. For many industrial processes the simulator may
be carried out in the shape of a delay line.

The output signals of the simulator are transmitted to the
multiplying elements, to the other entrances of which is trans-
mitted the computer signal which is proportional to the current
value of the production quality index. The output values of the
multiplying element are smoothed by the low frequency filters
and are transmitted to the entrances of the control devices
which move the controlling element.

If the quality index deviates from the extremum value, then
a correlated component of the search fluctuations appears at the
computer outlet. Values of the mathematical expectation of the
duplicating links signals differing from zero then appear. Slowly
changing signals are separated out by the low frequency
filters and start the control devices. The controlling elements
act on the production parameters in the direction approaching
the extremum of the quality index.

The values of control parameters, together with the disturb-
ance effects transmitted to them, are designated as X, , (v =1,
2,...,n). Each control parameter brought forth has three

The present work is devoted to the investigation of some}ﬁ&iﬁcomponents.
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X,=XI+6X,+6X,,

Here X,* working elements are output values of the ex-
tremum controlling portion of the system; 6X, are search
elements for which it is expedient to utilize high . frequency
controlled effects transmitted to the control parameters. and
0X,, are uncontrolled disturbance “effects transmitted to the
control parameters.

The current value of the production quality index in
general is a function of indicated control parameters and
disturbance effects f;, fp, - .., fn -according to transmitted con-
trol parameters.

When the transient process characteristics are descrlbed
sufficiently accurately by time delays, then the current value of
the production index is expressed by the function of preceding
values of indicated control parameters and -disturbances effects.

QZQ[XICT'_TI)9"'3Xn(t_1n)a.f1.a"->fm] (1)

The selection of the composition of control parameters '

must conform to the followmg condition. To each set of
‘permanent control parameter values must correspond a definite
(with an, accuracy up to the level of noises) set of production
parameter values. In other words, in a static regime and with
absence of noises a unilateral conversion of control para-
meters into production parameters must be realized. It should
be noted that no mutual unilateral conversion is required, so
that the number of control parameters may greatly exceed the
number of controlled production parameters.

In virtue of one-sided-unilateral conversion, to each extremal
“function of production parameters, corresponds an extremal
function of control parameters.

As agreed, the production quality 1ndex is an extremal
function of its parameters. Therefore, function (1) in relation
to the control parameters X, Xy, ..., X, is also extremal.

Adjustment-loss Time

Assuming that a process having unchanged, fixed working
- components of control parameters X,*, is under investiga-
tion, and assuming also that, by the initial adjustment, it was
p0551b1e at some time ¢ = #,, to attain the extremum value of
the production quality index, then under the influence of
distrubance factors the production quality index will in time
deteriorate spontaneously, in spite of the constancy of the
control coordinates (Figure 2). At the expiration of time T;
the quality index will get out of the permissible limits. The
disturbance effects are random functions of time or random
values, although in some individual applications their mathe-
matical expectations may dominate centred random elements.

The chance of producing quality index with time Q (?) is
also a random time function, known to be non-stationary for
this process with a fixed adjustment. And so, repeating the
above test, one gets new realizations Q (¢) and new time values
T; (Figure 2).

The overall adjustment-loss time by the quality index Q
is designated as the mathematical expectation M (T;) of time
intervals T;. So the overall adjustment-loss time expresses the
mean value of time interval, after which the production quality
index of the industrial process with a fixed adjustment gets out
of the permissible limits.

. The adjustment-loss time, understandably, depends on the
nature of the industrial process and its automation level by means
of frequency automatic systems. If the overall adjustment-loss '
time is great, then a non-automatic, hand control is not
difficult and there is no need to use a complex self-adjusting
system. If the aggregate adjustment-loss time is small, then a

. person is unable to secure adjustment even with the presence

of appropriate data transmitters and self-adjustment becomes
necessary.

Tt should be noted that the higher the speed of the industrial
process and the stricter the demands on the quality of production,
the smaller is the overall adjustment-loss time. Acceleration
of the industrial processes and stepping up of demands on the
quality of production are inherent characteristics of technical

.progress. Therefore, the application of self-adjusting control

systems of industrial processes has a broad prospect.

Equations of Extreme Control Processes

It is assumed that, in’ the vicinity of the extremum point,
serving as a working portion of the system under consideration,
the quality index (1) approximates with sufficient accuracy by
the quadratic shape of preceding values of cootrol parameters
and by the additional member 8Q; expressing the influence of

disturbing effects f3, ..., fi:

Q(z)‘=Q,+% _Z" ay Ak, (t—7) AX  (t—1,)

i,j=1
0%Q ‘
+00,a;;=0; =752 (2
. FET ST RX 0X
here . .
AX,=X,~X,=X5+6X,+6X,,
| —X,,=AX,+0X,+6X,,

are complete deviations of brought forth coordinates (para-
meters) of control , AX,* = X,* — X, are working deviations
of control coordinates, and Q, sis the extremum value of the
quality index. In case the computer of the quality index does
not bring about smoothing (smoothing is secured only by
subsequent elements of the circuits) and the production para-’
meter measuring instruments are practically non-inertial, or
their inertness is accounted for in the values of time delays Ty

the output value of the computer equals:

UH)=0@1)+50,()

Here 60, () is the element created by the errors of the
production parameter meters and the errors of the computer.
Thus '

n

UO=0+3 ¥

i, j=1

50=50,+50,

The value U (¢) in the multiplying elements of the synchronous
detectors (correlators) is multiplied by the search signals X,
displaced in time in the delay simulator. The errors in delay
simulation are designated 07,.

To the second entrances of the multiplying elements are

a0y AX,(=0) X, (=) +00 )

where
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transmitted values 6X; (t — 7, — 07,) and the output signals of
these elements equal V, = U (1) 6X, (¢t — 7, — dt,).

The linear portion of the controlling system without any
common restriction is divided into a set of filters and integrat-
ing elements (Figure I). The output working coordinates equal

1 & .
X;:=3 Zl I/Vkv(D) I/v

Here || Wy, (D)] is the matrix of the transfer functions at low
frequencies. Thus

" ‘ d
DX;=DAX;+DX,=Y W,(D)V D=4
v=1

or.

DAX} = z Wi (D) [ (13X, (1~ 5,)] - DXy

utilizing expressions (3) for U (¢), one finds

DAXT= % a W (D) {[AXF (1—2)+6X, (1 %)
i2, j1, ¥
+0X 5, (1= )] X [AX* (1= 1)) + 86X, (t— 1) +6X ,, (1=7,)]
x0X,;(t—1,—61,)]
+Y. Wi, (D) [(Q1+8Q)5X, (t—1)—61,)]— DX, ()
(k=1,2,...,n)

Summation by indices i,j, » is carried out within the limits
from 1 to n.

Quaiitative Analysis of Extremum Control Processes

Quasi-stationary Regime

The quality demand of an extremum control process reduccs
to the following. With considerable initial deviations from
extremum the state point must move to the extremum as
smoothly as possible (without much overshoot). In a steady
operation the state point must stay sufficiently close to the
extremum. . .

Let eqn (4) be converted into:

DAXk Z a;; ka (D)
i, j,v
[AX] (1—1) 0X;(t—1,)6X,(t—1,—61,)]
1la.. .

2 aAXF (1—) AX ¥ (1—1)) 6X, (t—r —d1,)

i, Jj
+ . Z aij' I/Vku (D)
L, Js 0
[AX,* (t—1) 60X, (t-‘rj) 06X, (t—1,—01,)]
+0¢— DXy : , (%)
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here

6¢k~— Y. iy Wiy (D) ([, (1) + X, (1 —1)]

i, v

X[0X;,(t—1)+0X;(t—1,)]6X,(t—1,—1,)}
+2 Wiy (D) [(Qx+6Q) X, (t—7,~d7,)] (6)

Values d¢;, may be treated as the effect of errors, noises and
search elements, brought to the outputs of filters of the syn-
chronous detectors, provided there are no working deviations
(AX,;* = 0). These functions do not depend on working devia-
tions (it is assumed, that 6Q does not depend on working
deviations) and on the whole may only obstruct the movement
of the state point to the extremum. .

Thus, d¢; always plays the role of disturbance effects and

- it is expedient to decrease them as much as possible. If the
search -elements 6.X;, have permanent constituents then, as seen

from expression (6), it is impossible to decrease indefinitely
d¢;, by any increase of time constant filters of the synchronous
detectors. Indeed, according to (6), the constant components
X, will cause deviations at the outputs of the synchronous
detectors. .

7 Y a,; W, (0)5X,6X,;5X +Z W, (0)(0,+00)5X,

Where at least part of the transfer coefficients W, (0) is
known to differ from zero, since otherwise the circuit of the
extremum control is inefficient. Thus, it is expedient to secure
zéro parity of the permanent elemeents of search constituents
i.e. the centering of the search oscillations. This is easily attained
by installation of high frequency filters at the outputs of the
search oscillation pickups.

In particular, an ideal high frequency fiiter separates, from
the input value, the high frequency constituent not correlated’
with the remaining part of the input value. This is illustrated
by the graphs in Figure 3, showing a density spectrum curve .S (w)
of the input function, which is assumed to be stationary and
ergodic and amplitude frequency characteristic 4 (w) of an
ideal high frequency filter. ’

An ideal filter separates the high frequency constituent with
a spectral .density S9, (w) Figure 3(b) not correlated with the
filtered component (spectral density Sw (w)), since the mutual
spectral density of these components equals zero.

If the data meter controls the full input coordinate of
the system X, = X, * + 0X, + 60X,y then the ideal high
frequency ﬁ]ter in a stabrhzed operation separates the high
frequency constituent 6X; not correlated with constituent
X, ¥ + 0X,,. It should be noted that stationary X,* may be
expected only in a stabilized regime of the system operation.
In transient regimes X,* is a non-stationary random function
and even with the use of ideal filters the search elements
prove to be to some extent correlated with the working
elements X, * .

However as is seen from the following in the present system
(perhaps even more than in other continuous extremum Sys-
tems), a quasi-stationary regime is profitable. In a quasi-station-
ary regime the transient process times are great compared to
correlated times of search elements. When a quasi-stationary
condition is sectired and with the application of high frequency

l,IV
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filters near to ideal the search elements may be considered
with a high degree of accuracy not correlated with X,*, both
in a stabilized and in a transient condition of the system.
Based on the above the search elements 0., it is assumed
as centred by random functions not correlated to AX*, §X,,, 6Q.
Investigation of other members of the right portions of eqn (5)
is now made. The second member of the right portion may be
rewritten in the shape

%Z ka (D) [F*éXv (t_‘rv_yé‘iv)] |

where
F*=Y AX{(t—1t) AXT (t—1)) (7
. %)
In view of the definiteness of the signs of the functions of

working deviations this member cannot facilitate the organiza-
tion of movement to the extremum.

Thus, members (7) play the part of impeding effects and it -

is expedient to reduce their influence to the minimum values.

The only accepted means of reducing the effects of these
members is the raising of frequencies (decreasing the correlation
times) of the search elements at given times- of transient
processes of a closed loop or, inversely, increasing cumulative
times at given correlation times of search elements. Either
one or the other means switch to a quasi-stationary regime.
In a ‘quasi-stationary regime the effects of members (7) can be
neglected. The following members of eqns (5)

Z a;; Wi, (D) [A*X':k(t—Ti) 5X‘jw(t—7j)5Xv(t"Tv'_5T,v) )]
LJ,V

although linearly depend on working dev1at10ns are also playing
the role of impeding effects.

In fact, as agreed 6X;, and 60X, are not correlated and X,
are centred. Therefore, the mathematical expectations of the
products 8Xj, (¢t — ;) 6X, (t — T, — d7,) equal zero. Thus,
the expressions in the square brackets represent linear forms of
working deviations, whose coefficients are centred ‘high fre-
quency’ random time functions. These members can only
increase the scattering of the trajectories of the state point
during its movement to the extremum.

In the quasi-stationary regime, because of the intensive
suppression of the high frequency constituents, members (8)
may be neglected.

Turning to the investigation of the first member of the right
portions of eqns (5) it is noticed that the product of search
constituents may be represented as a sum of the mutual cor-
related (at j # ) or a auto-correlated function and a centred
random function. Moreover, if the search constituents are
stationary and are stationary combined, then the correlation
functions depend only on the argument difference.

Tj)éxv(t—r\—érv)szv(Tv

where &;, (¥) are centred random functions members

Y. a;; Wiy (D) AX &, (D) ©)

i, J,v

5Xj(t— _Tj+51’-v)+éjv(t)

play the same kind of negative role as members (8). In a quasi-
stationary regime the influence of these members may be
decreased to the same extent, as the influence of members (8),
since the correlation times of function &;,(¢) are compared with

' the correlation times of function 80X, 0X,. In a quasi-stationary

regimé one neglects the influence of members (9).

And so, the general equations (5) give up their place to the
following equations of a quasi-stationary regime of the system
under consideration.

DAX} = 2 a; R, (z,

+5fk(t)—Dsz
(k=1,2,...,n)

T1+5TV) VVI(V(D)AXV:I~ (t—-rl)

(10)

These general equations of a quasi-stationary regime are
simplified in concrete, particular cases. :

First of all it is noted that the correlation times of search
signals are small, due to the presence of high frequency. filters.
Therefore, for a typical case, when the delay times 7; are not
identical it may be assumed

0 for j#v
RJV(TV_TJ—*—(S‘Cv):{R (51:) fOI‘ j:v

It should be noted that the same correlations take place also at
strictly identical delay times 7, = 7; but not correlated
search constituents. In practice, non-correlated natural search
constituents may be obtained by means of installing instead
of high frequency filters, band filters with non-overlapping pass-
ing bands. The shortcoming of this method is the considerable
lowering of the level or efficiency of the utilized search elements,
especially in multi-instrument systems (# dimensional).
At condition (11) eqns (10) take the shape

(11)

DAX; + Y. Wi (D) AXF(t—1)=6¢,— Xy, : (12)
i=1

where

W (b)= ; ayR, (5t,) W, (D)

Tt is also possible to introduce transfer functions of a closed-
loop system, then
AX= (13)

A(D) Z ( 1)k-‘—vAkv (D) (5¢v vl)

where .
D+ wg (D)e_””... We,e” ™ \

A, (D) is the determinant, obtained from A (D) by crossing out
‘K’ column, ‘¥’ line. . .
The roots of a characteristic equation

Ae A W (B .. Wi (L)
G|

are simply determined in case when times 7, are practically
equal, the synchronous detector filters are neutral and possess®
identical transfer functions: )
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for v#k -

R, (6t,) Wi (D)= {W(D) forv=k

In this case the characteristic equation (14) breaks up into n
equations of
le™ 1 : C
W C (15)

where C, is the semi-axis of the determining ellipsoid

Yoap AXAX, =1

i,k=1
If by decreasing the gain W (0) the roots of the characteristic
equation are made so small, that €™ &~ 1, W(l) ~ W (0), thén,

‘m accordance’ with (15)

W (O
2= cl) 0

and similar slow processes of extremum control always possess
monotonous stability. However, at small gains the extremum
control time or the self-adjusting time is great and the errors
considerable.

Errors produced by drifting of the extremum with con-
stant speed equal :

1

* k+v .
It is noted that the value
k+v Akv (0)
(=D ©

equals the area bound by the curved weighting function Kj, (1)
of a closed-loop system, corresponding to the transfer function

A, (D)
A(D)

k+v Akv (0) * _ .,

Values Ty, have time dimensions and-will be called ‘areas of
weighting functions’. If the system of extremum control is in
general disconnected at AX* (0) = 0, To Wy,£ =0,

0fi=

, .
AX:=_f .X.kldt=.——Xklt
0

(=1

where we consider X, = const.
With a disconnected system of extremum control, deviation

- AX,* increases and in time I, exceeds the permissible value

AX,:';: - TiXu . (18)

AX;,* where

Time intervals T; are called adjustment-loss times, as distinct

from the general adjustment-loss time, mentioned above.

From (16) and (17) it follows that

AX;:: - Z T;(v X'vf

v=1
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Errors AX,*, produced by constant drifting of* the extreme
point in a closed system, naturally, must not exceed AX;,*.

It follows from this that the weighting function areas must
satisfy correlations :

Z Tkval{<Tk1Xkl|=lAX;ckg| 19
v=1 )

Assuming in particular

X11= =Xk—ll =Xk+1l‘—f =an=

(moreover AX,,* remain final values) one obtains
[Tl < T

i.e. the weighting furiction areas must be smaller than the .
adjsutment-loss times.

The curtailment of the welghtmg functlon areas (decrease
of static errors) may be attained by means of increasing of the
amplification..- However, the increase of gains, beginning
with certain values, leads to loss of stability of the extreme.
loop. ,

The mcreasc in cr1t1cal values of the gains and curtail-

" ment of times of transient processes of the extremum loop

requires the diminution of transient displacements 7, between
points of action of controlling elements and control points
of output parameters in the industrial process itself.

The control of output parameters may be realized at the
output of the whole industrial process [Figure 4 (a)], in the
intermediate points [Figure 4 (b)], and at the output [Fig-

ure 4 (c)]. -

From the viewpoint of lag decreasing and possibility of time
curtailment of transient processes, a circuit having parameter
control in the intermediate points has a decisive advantage over
a scheme with control of output ‘[Figure 4 (a)] final since it
corresponds to the arrangement of information transmitters
in the immediate vicinity of the controlling elements. However,
this circuit also has one essential drawback.

The quality index extremum, calculated on the basis of
measurements in intermediate points may not correspond to the
extremum of output quality at the industrial process output.

A more . perfect circuit is the combined type [Figure 4 (c)]
where the control in the intermediate points is combined with
the output parameter control at the industrial process exit.
In this circuit the signals of the parameter transmitters of the
finished production pass through low frequency narrow-band
filters Q, for instance integrating elements, after which they are
added to the signals of corresponding transmitters, controlling
the output parameters.in the intermediate points. This circuit.
conserves the quick action of circuit 4 (b)) and at the same
time possesses. the accuracy of control of slow changing para-
meters, near to the accuracy of ¢ontrol of circuit 4 (a).

However, the above extremum control system even with an
improved informational section has a limited general application.

In fact, as seen from eqn (12) the dynamics of quasi-stationary
processes of extremum control in this system depends on co-
efficients a;, of quadratic shape of the quality index, depends
on time lag 7,, errors of simulation of this delay dv, and
intensity of search elements.

For some industrial processes these parameters may be
considered permanent, for others they are subject to com-
paratively slow random variations.
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For the first processes the extremum control loop once
adjusted maintains its efficiency for a long time. In the second
case the extremum control loop itself needs periodic adjust-
ment, accomplished by changing the transfer functions W, (D)
of the filters or just their gains Wy, (0), and also, perhaps,
the time delays.

The necessity of adjustment arises due to the fact that, even
though the stability of slow processes of the extremum control is
maintained in a wide range of variations a;,, R, (d7,), a guarantee
of the necessary quality of the extremum control is possible
only by a suitable selection of transfer function filters.

To this must be added, that even in those processes where
parameters a;,, T,, R,(dr,) remain unchanged the initial
adjustment requires either a priori knowledge of these para-

- meters, or their experimental determination.

Raising the chance of general acceptance of extremum control
systems with continuous.industrial processes, in the sense of
volume decrease of necessary a priori information, may be
attained at the expense of parametric extremum adjustment of
the basic extremum loop.

Self-Adjusting System with Parametric Extreme Ad]ustment of
the Basic Loop

To realize an extremum adjustment of the basic control, it is
desirable to select the adjustment parameters of this loop and the
quality index so that the latter shall be the only extremum in the
working portion of possible variations of adjustment parameters.

As an adjustment index of the basic loop, it is natural to
select the mean value, more accurately, the mathematical
expectation of the same production quality index Q, which is

‘utilized in the basic extremum loop.

Moreover, in accordance with (2)

n

M[Q]':Qz‘*'% >

i, ji=1
+M[6Q,]

it is possible to show, if the errors of simulation lag are so
restricted, that

a; MIAX,(t—1)AX,;(t—1))]

R,(61,)>0 (v=1,2,...,n)

>0 ' (20)

Then the estimation M [Q] always has an extremum by the
adjustment parameters d,; whereupon this extremum is the
only one in region (20).

Taking into account the availability of the single extremum
by the adjustment parameters and the general principle of
extremum control, it is easy to lay out a control system of
an industrial proess with seelf-adjustment of the basic loop.

This chart is shown in Figure 5. The basic loop of the
extremum control of the industrial process is here similar to the
one previously examined. The difference is only in the presence
of multiplier ‘matrix’ links, which realize varying transfer
numbers d, ;. '

Besides the basic loop the system has a loop of extremum
adjustment of the transfer numbers matrix.

It is assumed that the transfer numbers a;, of the indu-
strial process change slowly in time even as compared with
quasi-stationary processes of the basic extremum loop. More
accurately, it is assumed, that the time of substantial change
of the transfer numbers a,, is considerably. greater than the
general adjustment-loss time T (see above). It is noted that, in
principle, forced seif-adjusting processes of transfer numbers
are also possible. However, the dynamics of forced processes
is complex, and for their organization it is not enough only to
have the existence of an extremum of appraisal M [a] by the
transfer numbers of the basic loop. Thus, as a typical regime of
the system operation with two extremu loops, a regime with the
following grading of process flow speeds is assumed: (a) Search
elements in the basic loop '(the frequency processes);
(b) .working processes in the basic loop; (c) search of os-
cillations in the loop of extremum self-adjustment of the
transmitting . numbers, and (d) working processes of the
extremum self-adjustment of transfer numbers (the frcquency
processes).

At the above grading of process flow speeds, both the
processes in the basic loop, as well as the processes in the self- .
adjusting loop of transfer numbers are quasi-stationary. The
dynamics of working processes, moreover, are near to the
dynamics of ideal gradient systems (4). From this position
and presence of extremum of transfer numbers d,; it follows,
that upon fulfillment of weak conditions (20) a quasi-stationary
process of self-adjustment of the basic loop is always stable.

The above control system has considerable universal accept-
ance. By joining it with a plant (industrial process) with -
little known characteristics, the system matches automatically
transfer numbers corresponding to the quality index extremum
in the framework of the given structure of the system. ;

A further increase in ‘flexibility’ or universality of the system
is made by introducing extremum adjustment of the delay simula-
tor, extremum adjustment of the filter time constants and others. -
However, all of this involves further complexity of the system.

The possibility of Extremum Control of Non-automated Control

and Adjustment :
The main difficulties in introduction of extremu@

industrial processes at the present stage are connected withthe
complete automation of output parameter control and complete
automation of machine adjustment, securing the industrial
process. The technology of most industrial processes even con-

“tinuous, did not yet reach the level at which it is possible

to achieve continuous automatic control and adjustment. There-
fore, it is of great interest to find the means of extremum con-
trol for discrete semi-automatic or hand control and adjust-

ment. ’

The general algorithm of the extremum control and the com-
puting section of the control system may, moreover, remain the
same, as in a continuous automatic system.

Estimation of the information output capacity of the
measuring points, necessary for transmission of the search
elements, indicates that for processes with considerable ad-
justment-loss times a non-automated control is possible. For
such processes, a periodic hand adjustment of machines is also
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possible, which guarantees the industrial process taking place.

In this case the output signals of synchronous detectors are
transmitted to the integrated indicators. Operators (adjusters),
. guided by the indicators of these devices, are periodically
_correcting the adjustment of the machines. With this type of
- organization of the extremum control the control system itself
becomes a computer, either digital or analogue, equipped with
input and output arrangements. The closing of the loop of an

extremum control is here accomplished by men supervisors -

and operators.

530/7
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Invariance of Sampled-data and Adaptive Sampled-data SyStems
V.M. KUNTSEVICH and Yu.V. KREMENTULO |

One of the important scientific trends in the theory of automatic
control is the theory of the construction of systems on the basis
of compensation of the influence of disturbances, or the theory
of invariance of the control led value.

As is known, however, the invariance theory was recently
used extensively only for ordinary continuous control systems!~7.
Attempts were made in a number of works®—2% to extend the
general principles of this theory to sampled-data control
systems, but there has not yet been any full and systematized
statement of the invariance theory for such systems. That said
above relates in a still greater degree to adaptive systems in
general and sampled-data systems of this type in particular.
Since adaptive systems are a special type of non-linear systems,
then, as will be shown below, the introduction of compounding
disturbance links makes it possible not only to improve the
quality of systems when compensating the influence of distur-
bances, but also to extend the stability region of these systems.

The authors consider the.main aim of their paper is to
demonstrate the fact that the sampled-data system analysis and
synthesis methods expounded below can serve as the basis for
the construction of control systems with con51derab1y greater
accuracy than existing systems.

Henceforward the following constraints and assumptions
will be accepted: (a) synchronous sampled-data systems with
amplitude modulation are considered; (b) the sampling period
T is constant; (c) the pulse element is ideal ; (d) the equations are
written in deviations; and (e) initial conditions are zeroth.

Since sampled-data systems of fairly complex structure will
be considered, the consideration will begin with the method of
solving the equations of multi loop sampled-data systems.

Sampled-data Systems

Multiloop Sampled-data Systems Equations

A number of works®—23 have been concerned with the
compilation and solution of the equations of sampled-data
systems. The solution of the equations -of multiloop sampled-
data systems is given in the most general and convenient form
by Burshtein!”. The method suggested below has features in
common with Burshtein’s method, but allows one to avoid a
number of intermediate operations and to 51mphfy the calcula-
tions.

. In the most general form the equation for the kth coordinate
of a multiloop sampled-data system can be written thus:

n Ay

x,(s) = z We@xi )+ Y Y blxt (z)bk,, (s).

i=1j=1

m Py

+ Z Rkt (S)F (S) + Z Z Ckl]F*(Z) Ckl] (S) (1)

i=1j=1

where x,, x; are the coordinates of the system, F; the externa
disturbances, n, m the number of selected coordinates and
external disturbances respectively, /;;;, Py:; the number of parallel
links (pulse-continuous) between the coordinate x; and x; and
the coordinate x;, and the external effect F; respectively; W, b, b,
¢, ¢’ and R are the corresponding transfer functions, shown in
Figure 1, which depicts part of a multiloop sampled-data system
(kth node).

If one takes into consideration the additional coordinates:

blu(s)xl(s) xu+1(5)
bllm(s)xx(s) xn+1,1(5) 2 -
nl(s)x (S) xn+111+ 11(,,-.)+,(S)

m,,,(s)xn(s) Xut1iy+ o +1,, (5), €LC.

then the equations of the multiloop sampled-data system can
be given in an ordered form:

N N
_;lalj(s)xj(s)+.Z‘allj(s)x;‘(z)zAl(s)
'21 ay;(s)x;(s)+ —21 ay;(s)x7(z)=Ax(s)
where ” ”
N=n+ 3} Y lu
k=1i=1

is the full amount of coordinates of the system (including the
additional ones),

Ak(s) |:Z Ry (S)F (s) + i f C;’(lj F*(Z) Ckij(s)]’

i=1 i=1j=1
akj(s) =W (s); Ay (s) =Wy (s)—1;

and are numbered in accordance with (2).

System (3) formally contains N equations with 2 Nunknowns.
x;(s) and x;*(z). As in ref. 17, the terms containing transforms
of the coordinates will be transferred to the right-hand side.
The resultant system will be solved relative to the arbitrary
coordinate x; (s). This gives:

a;‘(j (= b;(ij )

Ax;(s)
x;(s)= () 4)
where
‘711(5)’---»01N(5)
A(S)= .............. . (5)
Ay (8), ..., ayy (s)

is the common determinant of a purely continuous system.
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Determinant (6) may be presented in the form:

T Egn(7) |**

The first of the determinants entering into (7) will be denoted

by 447 (s), and the remainder by A"a,I: (s). Bearing in mind the

notation adopted: .
WAOTE NV RO
xj (S) A ( ) kgl xk (Z) < A (S) > , (8)

Subjecting (8) to a z transform and cancelling out like terms, the
following relation 1s obtained: .

s 1+(2 "f‘)()} (%) o 3 wei(%e) e
(k#J) ©

Thus the initial system (3) can immediately be raised to é.
full system by equations of type (9). The full system of equatlons
of a multiloop sampled-data system has the form:

> alj(S)xj_(S)Jr.;ai,-(S)ﬁ(Z)=A1(S)

j=1

N

3 a %0+ T ok 9%} @)= Ar(o)

i=1
1 ES
[1+(“ )(z)]xl(z)
N 1 * 1\*
“;"f) (z)xj-‘(z)=(4;> 2);

(10)

,+jz<

) ( ) <z)x}‘<z)+[1+<"”"><z)]x~(z) ( )(z>

which column of the common determinant 4 is subject to
substitution, while the lower index indicates substitution by
coefficients for particular variables. Thus, A% x*; means that the
kth column of the common determinant A is to be replaced
by coefficients at the jth discrete coordinate.

System (10) can be solved, relative to the coordinates of

_interest, by ordinary, algebraic methods. Sampled-data systems
-with various types of link will now be considered.

Sampled-data Systems with Continuous Compounding Links

An automatic control system with one pulse element, which
can be described by a system of three linear equations with
constant coefficients, is studied. The block diagram of the system
is given in Figure 2, which also shows the transfer functions
of both the main loop and the additional links.

The initial system of equations is:

@ (8)+0— Wy, W, (s)+0=(5) 1 (s)
Woe(8) Wi () @ (5) +0(s) = W, (s) u(5)+0
02 () A+ W, ()Y (5)

Wi (5) @ () +0+ ()= W, () 0™ (2)

=W (5) () + Wy ()4 (5)

- In accordance with the method expounded above, this
system is made into a full one by the deﬁcient equation:

o)

Henceforward, only programme and servosystems will be
considered; hence, in (11), 1 (s) = 0.

From (11) and (12) one can easily find an expression for the
controlled coordinate in which one is interested.

P ()=K;,(s)¥(s)

(1D

(12)

| G#AN) KO gk kK@) 13
When writing the determinants forming part of (10), the 1-K3 (Z)_“ KK (2) :
following symbolization is accepted. The upper index shows where
N.
* ar1(8)y ees ajj-1 (5); 4, (5)— ‘21 ailj (s) x;‘(z); A1j+1 (s),...,a;n (9)
: j= :
ij(s)z ........................................................ ©6)
N
ay; (s), ..., anj-1 (8); Ax(s)— '21 aIIVj(s)lx;? (z); aNj+1 (s), ..., ann(s)
j=
sk asi(8),..es A1j+1 (5); 4, (); ayj+1 (8), s azn(s)
4,0)= | o
ayy (), ..oy aNj+1 (5); Ay (s); anj+1 (5), +rs ann ()
| » ™
N . ag (), ..o ayj-1 (s); a1k (5); A1j+1 (8), .., ann(s)
A |
k=1 an; (s), ..., ayj-1 (8); ani (8); anNj+1 (), ...,ayn(s)|
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W)W W) Wo(s)
K 0= oW, 0 O~ 1w, o W, o
KS (S) VVue (S) + vyuu (S) i (S) ’

K6 (S) (m(p (S) (S) +W, vp (S) W;x(p (S);

K7 (s) = Wvu (S) W;w (S)

Conditions of Absolute Invariance. The condition of absolute
invariance for servo and programme systems is:

e ()=K; (Y ()
K;(s)

K (- KK (2) {{(Ks+ KK Y] ()} = (5)

or
—e(5)=K5() Yy (s)
K;(s)
1-K7(2)— K3K5(2)

. (14a)

{[(Ks+K,Ke)¥]* (2)} =0
(14b)

where &(s) = p(s) — @ (s) is the system error of the system;
K'5(s) = K, (s) — 1. ’ ‘ ‘

The basic differences between the conditions of invariance
for continuous and sampled-data systems is emphasized. While
in continuous systems the conditions of absolute invariance do
not depend on the form of ¥, and are determined only by the
parameters of the components of the system, in the sampled-data
system under consideration, these conditions (14) essentially
depend on the form of the input signal .

It can be shown that the condition of absolute invariance
physically signifies the equality to zero of the sum of the indivi-
dual components of the coordinate ¢ produced both as a result
of the direct effect  upon the system, and also on account of the
effect via the additional (compounding) links.

Invariance Conditions for Discrete Moments of Time. The
invariance conditions (14) were obtained from the requirement
of the equality to zero of coordinate ¢ at any moments of time.
One may pose a less rigid requirement—the equality to zero of &
at the sampling instants, i.e.,

(15)

The conditions under which (15) is satisfied ére called
‘conditions of invariance for discrete moments of time’. If (14)
is subjected to a z transform, then the problem is solved at first
sight. However, it is easy to show that the invariance conditions
for discrete moments of time as well, will depend upon .

An attempt is made to obtain the conditions, independent
of y. Both parts of (14b) are multiplied by

Ks(s)+ K, (s) K¢ (s)
K5 (s)

and then subjected to a z transform.

(1 ) W@
(K 8>(z) Wtz )+<K2) ()1—1(3‘(2)—1{31(2(2)

e[nT]=0

531/3

By equating the right-hand side of (16) to zero, the following.

invariance conditions are obtained for discrete moments of time:

1—K§‘(z)+|iK3(KK+:FK6!)i|* (2)=0

2

a7

The conditions of absolute invariance for a similar con-
tinuous system (i.e., a system having the same structure) can be
given in the form:

K@ [Ks () +Ks@]
K5 (5)

If (18) is subjected to a z transform, eqn (17) is obtained,
i.e., the introduction of a pulse element into an absolutely invariant
continuous system does not impair the conditions of invariance
for discrete moments of time for the so-called ‘fictitious coordinate’

(S)

1-K,(s)+ (18)

&y (8)=

&(s)

As shown by Krementulo'® from the equality to zero of
&, [T, there still does not follow the equality to zero of ¢ [nT1].
The additional conditions will be given, under which ¢ [nT] = 0,
and does riot depend on the form of . (14b) is subjected to a
ztransform, and then'l —- K (z), found from (17), is substituted

¥V — ATe - K:(Z)
K3

{Ksy™ (2)+[(K3+1) Ke¥]* (2)}

The additional condition:
K;+K Ks;+K * ,
l:( 2 6+K5> Kzlp] (Z)=<_5‘,"_6+K6> (@) Ky*(2)
K5 K3
' (20)

Condition (20) is satisfied if [(K; + Kg)/K,'] + K contains
proportional components or components with a pure time lag.
From (20) and (17) can be found the transfer functions of
continuous compounding links,

[l

(19)

Sampled-data Systems with Discrete Compounding Links

A brief examination will be made of the properties of a
typical sampled-data servo-system, the block diagram of
which is given in Figure 3. The expression of the system
error ¢ is:

Wi (2) Wipa (2)

" (2)= ¥* (2) (21
1+ W, (2) W(Z)
The condition of invariance at discrete moments of time is:
Wy (2)= (22)

()

In the general case, W,}(z) and W,,(z) are the ratio of
polynomials according to the positive powers of z, the power

(16) of the numerator being less than that of the denominator.
* is obtained, where I (s) = K; (s) + K, (5) K¢ (5). . Since W;,‘p (z) must be inverse. to Wq,",‘,' (z), then it cannot’
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be physically realized (advancmg components are required
for this).
It is important to note that the introduction of the link
Wy * (z) and the satisfaction of the invariance condition (22)
do not alter the characteristic equation of the system:

Kg (2) P*(2)+ K] (2) Q" (2)=0;

K (2) P*@)_ s >
2 W (2); W (2) (23)
(Ki@) o ¢

and therefore do not influence the stability of the system.

Examples were given by Kuntsevich!? to show that even in
those cases when W,,";, (z), obtained from condition (22) cannot
be realized, provided it is selected in a particular way, it is
possible to increase considerably the accuracy of a sampling
servosystem.

When for any reasons it is inconvenient or impossible to
introduce the compounding link W, (z) one may introduce
into the system additional hnks equlvalent to the direct com-
pounding link W,j';, (2). Eqn (21) can be brought to the form:

VA B
¢ (2)= TWEDW ()wo

_ " W;, (Z)
1+ Wi (2) W, (2)
It is not difficult to-see that (24) is met by the scheme
shown in Figure 3 (b).

If (22) is satisfied, then the condition of absolute invariance
has the form:

[¢*(2)+ 9™ ()] (24)

V) _ W) 05)
V) W)

The latter equality can be satisfied only in some particular
cases, and, as shown by Krementulo', requires the inclusion
of advancing components if  [0] = 0.

Sampled-data Systems With Pulse-continuous Compounding Links

In this section a servosystem will be used as an example to
show that when pulse-continuous links are used it is in principle
possible to achieve absolute invariance in a combined sampled-
data system.

Assume that the block diagram is predetermined, i.e
Woe (5), Wy, (s) and W, (s) are known. A compounding link
with respect to the 1nput signal Y W, (s) is introduced to
improve the dynamic properties. The transfer function of this
link has to be determined.

The expression for the system erroris:

—&()=[W,y () W, ()= 1] (s)
er (S) W(pu (S) * S
WS (D) + Wy W, W ™ (2)] - (26)
1+ W, W,, WE(z) won e
Having equated ¢ (s) to zero the condition of invariance of
the system is obtained from which the transfer function of the
compounding link can be determined:
1 Wus(S)
Wou (S) ¥ (s)

W ¥™(2)~¥*(2)] (27

W (O)=rr—=

The signal of the compounding link v, (5) equals:

Y (s)
vy (s)=
! Wou(s)
This signal can be realized with the aid of the scheme shown
in Figure 4 (b). In a similar continuous system, the compounding
link with respect to 4, chosen from the conditions of absolute
invariance, equals:

W () [Weo " (2) =y ()] (28)

W/,u[/ (S) =t Wue(s) [ £ (S) ] (29)

1
Wou(s)

It can be seen that for both the sampled-data and the con- -
tinuous system the compounding link has one and the same
structure and consists of identical components. The difference
lies in the fact that in an absolutely invariant sampled-data
system some of the components are connected up via additional
pulse elements operating synchronously and in phase with the
main one. What has already been said also holds in the case
when real pulse elements are used.

" Extremal Sampled-data Systems

 Systems without Compounding Links

Today a large number of extremal sampled-data systems of
various types are known, which have been studied by many
scientists. But certain specific features of these systems remain
unexplained. Of the known extremal sampled-data systems an
analysis will be made on the basis of full and precise equations
of dynamics of only one system which, as was shown in (29),
provides the best tracking quality with continuous drift of the
extremum, and whose properties are at the same time closest
to those of a hypothetical system measuring the position of the
extremum point without any errors.

As in most works, the controlled plant with extremal
characteristics will be considered to be one which consists of a
linear inertial component and an inertia-less component with
extremal characteristics.

The equation of the non-lincar component, taking into
account the action of two kinds of disturbances (or two com-
ponents of one and the same disturbance), which displace the
extremum point, will be written in the form:

p=—oz(x+Y)>+ 4 (30)

where ¢ is the index of the extremum, and , 4 are disturbances
of an arbitrary kind, inaccessible for direct mcasurcment by
virtue of the conditions of the problem. Let the remaining
equations of the extremal system (see Figure 5) in the absence
of the components shown in Figure 5 by the dotted line, be:*

x(8)=Wyp (s) M (s) (€2Y)
where

M=u+m (31a)

* Since the system under review is non-linear, then strictly speak-
ing, neither the ordinary nor the discrete Laplace transform is applic-
able to it. Therefore the final results will be obtained with the aid of
a set of non-linear difference equations. To simplify things, the
Laplace transform will only be used in application to the linear
components.
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m (s)= Wy (s) m; (z) (32)
where ) z ' .
m; (z):aI'WH_—Z (32a)
HE=Wu(u*@) (33)
Va=A4¢,-1(=1)" (34)
u* (2)= Wy (2) y3(2) (35)

Here (31) is the equation of the linear part of the plant,
(32) the equation of the modulation circuit, (34) the equation
of a controller with synchronous detector, (35) the equation
of the correcting elements, (33) the equation of the servo-
motor and x, 4, @, u and y the controlled coordinates.

Henceforward it is taken that the dynamic properties of the
plant and the slope «; of the extremal characteristic are constant
or quasi-constant. ’

The error of the system is denoted as:

e=p'+4 (36)
and also the notations are introduced
xX*(2)=p* @)+ m™ (2) SNEY)
where
W 2) =Wy W (D) u™ (2) (37a)
m'™*(2) =W, W (2) m{ (2) (37b)

On the basis of (37b) and (32, 32a), the modulating effect
m'y, scaled to the input of the non-linear element, can be
represented in the form

m,=aycosnn=da,(—1)" (38)

where apr is determined from the particular solution of the
difference equation

ay (=1)"'=ay W Wo (E) (= 1)" (39)

which is obtained following the replacement of (32) by the
difference equation corresponding to it.
Solving jointly (30), (36), (37) and (38) gives

In= —2aM<X3(e,,+e,,_1)+AZ,,_1(—1)"—a3(ef——_ef-1)(—1)"

(40)
From (40) it can be seen that the signal on the output of the
component (34), apart from the useful component proportional
to the error contains further additional terms, one of which
Al ey (— 1)® reflects the influence of the disturbance 2,, and
the third term shows that the measurement of the position of the
system relative to the extremum point is not ideal.

Further replacing (35) and (33) by their corresponding
difference equations, and solving then jointly with (40) and
(37a), the equation of the dynamics of the system is obtained
in the form of a non-linear difference equation with time-
varying coefficients

[2ayousW(E)(E+1)+E]e,—a3 W (E)[e2,; —e2) cos nn]
' =1 — W (E)[ 44, cos nn]
where W (E)= W, W,.(E)W,,(E) (41)

As was shown by Kuntscvich?® 3, the non-linear eqn (41)
has the peculiarity that at a particular correlation between the

531/5°

system parameters and the speed of variation of disturbances
©n, A the stability of the system is impaired, whereas analysis
of the linearized .equation obtained from (41), disregarding the
non-linear terms (as done by Chang?®, Van-Neis?® and Ivakh-
nenko?”) does not permit one to detect this phenomenon.
Therefore the feasibility of constructing an adaptive system, the
error of which would be invariant in relation to v,, 4,, acquires
particular interest, since it involves not only the improvement of
the quality of the system, but also the increasing of its stability
margin.

Invariance of Extremal Control Systems with Indirect Com-
pounding Links

Since, by virtue of the conditions of the problem, the
possibility of direct measurement of the signals y and 2 is
excluded, the possibility will be considered of using indirect
compounding links with respect to y and 2 similar to those
considered above. '

Consideration will first be given to the possibility of attaining
invariance of system error at discrete moments of time, relative

to w,*. :
~ From (41), (36), (42), and (42a) and also from Figure 5, it
follows that . " e
Y (@)=e"(2)— 1" (2) (42)
or Y (2)=e"(2) = Wy 1" (2) (422)

For the construction of the correcting link with respect to
w in accordance with (42a), the variable u’,, can be obtained
with the aid of a model of the linear part of the controlled plant
(see Figure 5%). A signal proportional to e, (or, more strictly,
containing ¢,) can be obtained on the output of an additional
synchronous detector (see the part of Figure 5 outlined by
broken line), the equation of which is:

Yn=0, (1) (43)
Solving (30), (36) and (43) jointly, gives

In==2ay05e,— oz (er +ag) (= 1)"+4,(=1)"  (44)
For filtration of the parasitic quasi-periodic terms of signal
(44) on the output of the detector in the network in Figure 5,
a low-frequency filter is provided.
Taking this into account, the signal on the output of the
additional control loop is written in the form
W, ~ D(E)Y, (45)
where

D(E)=2ayp0; Wq;, (E) W (E)
Omitting the intermediate operations, the equation of the
dynamics of the system in Figure 5, with an additional control

loop, is obtained, on the basis of the equations cited above and
also eqn (45), in the form

[(2ay23W (E)(E+1)+E]e,—asW (E)[(e7+; —ep) cos nn]
= [] —2apo3 Wy W (E) W(,i (E) Wy (E)] /M
—W(E) 44, cosnn (46)

By equating to zero the operator comultiplier for v in the
right-hand side of (46), an expression is obtained of the impulse

* It is noted that in contrast to ordinary servosystems, in which
the input signal may also contain a noise which has to be suppressed
as effectively as possible, the task of an extremal system in all cases is
complete performance of signal .
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transfer function Wx (E), which ensures the invariance of the
system from v, at discrete moments of time

1 1
2ay%3 W, (E) W (E)

From (46) it can be seen that the satisfaction of the con-
ditions of invariance (47), and the presence of the filter in the
compounding-link network (as distinct from the filter in the
main network of the controller), do not alter the form and
coefficients of the left-hand side of the equation of the dynamics

Wk (E)=

(47)

of the system, i. e., do not directly influence the stability of the-

system. .

When the required transfer function Wg* (z) is physically
unrealizable, then, as for ordinary servosystems, a considerable
improvement of accuracy (increasing of the degree of astatism)
can be achieved by appropriate selection of the transfer function
Wx* (z). An example is given in the Appendix of the method
of selection of the coefficients of the transfer function Wx* (z).

In deriving the conditions of invariance (47), the quasi-
periodic non-linear terms in (44) were disregarded in order to
simplify the investigation. As follows from the example in the
Appendix (see also Figure 6), the influence of these terms is in
fact small. * )

A brief examination will now be made of the possibility
of minimization (or complete elimination) of the system error
due to 2. From the equation of the system dynamics (46) and
(40), it follows that for the predetermined structure the ‘possibi-
lity of constructing a correcting link with respect to A(¢) in a
similar way as with respect to y, without constructing an analogue
of the non-linear component, is excluded. By virtue of this, with
the scheme structure adopted, only methods of minimizing the
influenceof 1 (£) can be considered. One such method, based on
the selection of the corresponding function W, (z) was con-
sidered by Chang?, Van-Neis?® and Ivakhnenko?’. The results
obtained by Tou* may also be used here.

" Appendix

Example—In Figure 5 let

%y
74541

W F(5)=—2zs (=2

to which there corresponds

o0, (1—dy)z

Wop Wi (z)= A2 12
. @)= ey
and further, let N
W3 ()= )
NI

where. Bf' (z) and By (z) are polynomials from z, dy=e~7/.
It will be taken that

It is not difficult to see that in the given case the impulse
transfer function Wi (z), as determined from (47), which is
required for attainment of the conditions of invariance, is
physically unrealizable, and only the approximate satisfaction
of the conditions of invariance can be spoken of ; by virtue of this,
Wi (z) will be sought in the form of the series

K -/ _1\i
W:(z)=,=zlci<zzl) @

Denoting the left-hand side of equation (46) by L (E)e,, in order
to abbreviate the notation, one ean write it for 44, = 0 for the
given example, bearing in mind (48), in the form:

L(E)e,=EB; (E) {~2aya,0503 (1 —dy) (1 —d,)
X [Cid,+Cod®po s+ ..+ CKAK%—KH]

+ A%, + A%, [(1—d )+ (1= dy)] + A, (1 - dy) (1 - dy)}
' (49)

(50)

Provided. 1
Y72 a0 000,

the error from the first difference v, is eliminated, since, when

this is satisfied, the equation of the system adopts the form

L(E)e,
=EB, (E) {=2aym o005 (1=dy) (1= d) [CoA% 1 + ..
+Cx A ks ]+ A%, + (2 —dy —dy) Ay, (51)
Further taking
2—d. —
: Ca= 2 aMO‘1°‘(2°‘3 (dll'" ;12))(1 —dy) (52
and bearing in mind that
Ail//n“AiWn—l =Ai+11/’n—1 -

(51) can be rewritten in the form
L(E)e, ,

=EB, (E){—2ayo;0,05(1—d)(1—d,) [C34Y, -, + ...

+Cxd Vg1 ]+ 4%, — Co A%,y (53)

from which it will be seen that, irrespective of the coefficients
W, (2) the error is eliminated from the second difference V,,.
Since further increasing of the degree of astatism on account
of the correcting link is impossible in the given example, C;, =0
will be taken for i > 3. .

For quantitive evaluation of the quasi-periodic terms in (46),
which have not been taken into account, in Figure 6 the transient
in an extremal system is plotted, taking into account these
terms for y, = fn, 42, = 0 for eqn (46).

For the transfer function of the components cited in the

, 1—e™sT | example under consideration and for W,z = 1, the precise
Wo ()= B T_ZSIT equation of the dynamics of the system has the form:
to which there corresponds '
p’l p AgeysstAie,ra+ Az, +Ase, :
’ T Ua Y ¥ n
W("(z)—z—dz’ (dy=e"""") =az;(1—d)[epr2—ens1+dar (e —eD)] (=1
2 2 2 n ~
* The system in Figure 5 was checked experimentally on an elec- +os(l- dl) (1 - d2) [e,, st e +2ay ] (_ D (4)
tronic analogue by A. A. Tunik; and the check confirmed the effective- where :
ness of the introduction of indirect correction®!. Ao=1; A;=2ayas(1—d)—(1+d+d,);
531/6
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A2=2aMOCE(1—d1)(1—d2)+d1 +d2+d1d2;
Ay=—dydy—2apos(1—-d)dy; ay=o,0,0,

Here, for comparison, the transient processes in an extremal
system without correcting link with respect to v, have been

plotted, in which W, (s) and W, (s) are tae same as given "

above, and low-frequency filter with transfer function
1—e™7 1
s 135+1

is included into the main extremal-control network z transform
of W, (s) is

W, (5)=

W:(z)=z—d3

where dy = €T/,
Bearing this remark in mind, for the given case, the equation
of the dynamics (41) of the system adopts the form
6en+3 +Allen+2 +A',26n+ 1 +A;en
—oy(1—d) el —erry+ds(elsy —eN](—1)
=A3l//n+1 +[(1_d1)+(1 _ds)] AZ‘//nH

+(1=d)(1—d3) 4,y (55)
where

o=1; Ai=2ape;(1—d)—(1+d,+d;5);
Ay=2apa;(1—d)(1—dy)+d, +dy+dds;
Ay=-2ayou;(1—d)ds—d,ds; az=0,0,0s

As can be seen from the curves in Figure 6, an increase in
(the rate of drift of the extremum) leads to the loss of the
stability of the system (55). Thus the introduction of compound-
ing links with respect to 4, not only improves the quality of
the system, but also preserves its stability, thus extending ‘the

- sphere of application of extremal systems to the case of high

extremum drift rates.
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Figure 1. Block diagram
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Figure 2. Block diagram of combined-control system
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Figure 3. Block diagram of servosystems: (a) with direct link with
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Figure 4. Block diagram Structural scheme of combined servosystem  I1II:
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Optimization and Invariance in Control Systems
-with Constant and Variable Structure
B.N. PETROYV, G. M ULANOYV and .S. V.EMELYANOV

Invariz‘lnce and Optimization in Automatic Control Systems

Optimization of Automatic Control Systems and K (D) Image
Theory

The object of the general theory’ of optimization of automatic
control systems with respect to accuracy is the optimal synthesis
of control systems operating under conditions of continuously-
acting disturbances. ' ’

In the deterministic set-up of the problem1 3,7, 8 the optimal-
ity criterion is the achievement of the highest degree of accuracy
of the automatic control system, as measured by the error e,
which is equal to the difference between the desired g'(r) and
the realized x (f) value of the state of the system ¢ = g (f) — x (7).
In the case of static synthesis the optimal system-found from
the probability characteristics of the controlling signal and the
interference, has a transfer function @y, and possesses the
greatest accuracy only in the mean.

The main results relating to the construction of optimal
systems in the case of the deterministic set-up, have been
obtained by the theory of invariance, on the basis of which
there can be effected the construction -of automatic control
systems with an error ¢, equal to zero or extremely small in the
presence of disturbances, the measurement or use of which for
the purposes of control is feasible. The conditions of the theory
of invariance of automatic control systems, in the case when
disturbance links do not nullify the numerator of the transfer
function (and thus the corresponding transfer function), and
when f(¢) is specified, are expressed with the aid of the K (D)
1mage introduced by Kulebakin

K(D) f(n)=0, K(D)%0, f(H%O0... W

K (D) and f(2) are linked by the conditions .of the operator
K (D) image of the functions’. In this case for a stable system
its transfer function must either be the conform K (D) image
“or have this operator K (D) image as co-multiplier.

In the statistical set-up, with regard to determination of the
transfer. function of a control system in the case when it has an
infinite memory, according to the mean-square error minimum
criterion, one of the main results was obtained by Wiener. Ob-
viously, in one case it is possible to establish precisely the corre-

spondence of optimal systems in the case of the statistical and
" deterministic set-up of the problem. When the dispersion f(7)
tends to zero, Wiener’s optimal system and the optimal system
as determined by the conditions of invariance coincide and
should, strictly speaking, lead to the same results. The generality
of systems obtained in this case according to Wiener, and of
invariant systems, in particular systems meeting the condition
of Kulebakin’s K (D) image, are demonstrated. Taking the

interval of observation of f(f) to be infinite, and thus being
concernied only with the forced output of the system, the
transfer function ‘of a Wiener optimal system is characterized
by the magnitude of the MS error &% (ref. 6):

8=21—Jw (8,(0) =[Py (j) Sp (@)} dwo .. (2)

S (w) is the spectral density of f(¥), S, (w) the spectral density
of the desired output signal. In the reviewed problems of
control for stabilization S, (w) is conformally equal to zero,
since, with complete filtration of external disturbance f(#), the

- desired output.of the system must be conformally equal to zero.

The conditions of zeroth error &%, = 0 lead to the following
requirement in respect of the optimal transfer function of an
automatic control system:

2=0 S,(@)=0 3)
I(I)opt (]CO)'Z Sf (CO) 0 ) (4)

The Iatter can be satisfied for (I) () f@® =0, whlch is a
sufficient condition.

In the case indicated, when

' A, (p)

1)) et Y 4
D=2 ~°

where A, (p) is the numerator of the transfer function, and A (p)
is the characteristic polynomial of the automatic control system,
expression (4) can be found for (@) A (p) = 0 or (b)) K (p)— o,
where K (p) is the coefficient of transfer of the automatic control
system (the characteristic equation of the control system is .’
A(p)=K(p)+1=0). Co

‘The above-mentioried conditions correspond to the known
conditions of invariance, the realization of which in physical
systems is determined specially.

Without individually examining the above-mentloned
possibilities (for ® (p) = 0), the case of the non-zero operator
@ (p) # 0 will be considered.

If Oyt 0 and Sy 0 the satisfaction of condition (4)
is possible when

Dp (p) - f () =0 &)

This requirement corresponds to the condition, of invariance
optimal according to Wiener in respect of disturbance f(z),
and coincides with the' K (D) image!. An analogous method is
used to establish the community of invariant systems and-
systems optimal according to Wiener, in the case of other
control problems. Thus the ‘K (D) 'image can serve as a tool

* for automatic control systems optimatization theory.
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As an example, consideration is given to the forced motion
of an automatic cqntrol system under the influence of an external
disturbance, which is described by the equation

A(p) x()=(p*+ wd)sin wit

The transfer function of system ® (p) = p2? + wr?/A (p),
by virtie of condition (5) corresponds to an optimal system,
since it contains the K (D) image of the action.f(¢) as a comul-
tiplier (p? + w} is the K(D) image of f(¢) = sin w?):

Then, according to condition (4), the-function |® (jw)|? and
Sy (w) will respectively have the form of Figure 1.

The product of the function |® (jw)|®* S; (w) equals zero,
since |® (jw)|2 > 0 when w # wg, |® (jw)|? = 02 when w = wg

®F# WOy
S (w)= ) | — wgl {
d K 5fum:t »=wg
Generalization of X (D) Image Theory for the Case of Statlstlcally
Given Disturbances f (¢) .

The K (D) i 1mage theory expounded in the works of Kuleba-
kin, was developed for the case of a disturbance f(¢), preset as
a determined function of time 7. To the class of functions
particular, those which permit approximation of f(¢¥), as
accurate as one likes, by integrals of linear differential equa-
tions, homogeneous and having constant coefficients. Shannon?
has shown that a very broad class of functions, with the
exception of hyper-transcendental functions and & functions,

.may also be approximated by the solutions of homogeneous

differential equations with constant oefficients.

The need to develop statistical methods in .the theory of
invariance and in particular in the case of K (D) images is
explained by the following. The theory of invariance up to &
depends essentially upon the form of f£(¢). The absolute invari-
ance of automatic regulation and control systems in the case
when the transfer function of the systems, as a function from
f(¢) equals zero, is generally speaking real for any ./ (¢), con-
strained with respect to the modulus, in particular in relation
to those about which information is missing.

In the case of the K'(D) image the effect of absolute invariance
may only be observed for a completely defined function f(z),
knowledge of which, as a determined function of ¢, must be
available with a probability of 1. Thus essential for the theory
of invariance is knowledge about f(¢), which is nesessary in
different cases with a probability from 0 to 1, particularly when
investigating invariance with accuracy up to &. In the case when
f(p) is given in a probabilistic sense, the effect of invariance—
particularly from the viewpoint of the K (D) image theory—was
not examined, and the theory of invariance itself is not developed
at the present time. An attempt is made below to apply the
theory of statistical optimization to the determination of the
statistical probabilistic conditions of automatic control systems
invariance, and generalize the theory of K(D) images for this case.
Henceforward, as previously, we are examining the effect of in-

. variauce, the class of statistical actions f'(£) and control systems

relating only to stationary systems and stationary actions f (t)
Approximate Conditions of Optimalization Uszng the K (D) Image
in the Case when Dispersion is Present

In the well-known works of Kolmogorov!® and others it is
shown that any stationary random process may be represented

as the limit of a seqhence of processes with a discrete spectrum,
The general expression of a stationary random process f(¢)
in this case may be as follows:

. .
f®= Z agsin (wgt + @) C (6)
. K=1
where ay, a, a,, ..., ax, ..., a, are uncorrelated random magni-
tudes with mean value zero, i.e.,
M, =0 i=1,2,..,n
MM, =0 i#j

where M is thé sign of the mathematiccl expectation.

It is also known$ 10 that for each stationary process f(¢) it
is possible to indicate a number ¢ as small as desired and as
large as convenient an observation time range thereof T, for
which there exist such pairwise uncorrelated random magnitudes -

ay, ay, ..., a, that the completeness of approximation to the
n

series 2 ag sin (wxt —i—(pK), determined by the mean-square
K=1
difference, will be such that

Mlx()— Y ag sin.(coKt%(pK)Ist
K—1

It has thus been shown that each stationary random process
F(®) can be approximated as accurately as desired by the sum
of harmonic oscillations with random uncorrelated amplitude
and phase. Most essential henceforward is the fact that w,,
characterizes the constant frequencies of process 1 (f).

For the above series the correlational function Ry (z) has,
as it is known, the form

-n

Rf(f)=K\;1 %Ecoszz(M {f ()} =0)

where w, is the lower frequency of the spectrum of the random
process, equal t0 ®; = 27/Tmax, Tmax iS an interval of time,
beginning with which |R; (r) < & Ry (0) where 5 is usua]ly
taken to equal 0-05.

For the Ry () under cons1derat10n the spectral density
Sy (w) represents a discontinuous functlon consisting of
6 functlons of the form

n 2

5= T Koo ™

By virtue of the foregoing, the condition of an optimal control
system is given by the expression

[q)opt(jw)lzsf(w)=0 } A —"

or on the basis of (7)

. - a
@, G- Y TK5(w—|wxl-)=0

‘Since the second co-multiplier of (7) characterizes the
spectral density .of some periodic function, the expression
obtained may be written in the form

Dy (p) 1y 5 (0,1 + @)+ Py (p) - @ sin (Wl + 92) + ...
+ (I)opt (p) Qn Sin (wnt + (pn) = 0
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In this expression the magnitudes ay, as, ..., a, and @y, @, @,
are random, undetermined uncorrelated magnitudes, wg are
constant for the given f (7). For determination of @,y the fact
that ag, @x are unknown is not essential, since Dot (p), bemg

the K (D) image of f(f) = E aK sin (wx t + @x) is only deter-

mined by the frequency parameter oy. Since Qg (p) for each
partial frequency wg of the spectrum equals p* + wg? the
following will be the general expression of @, (p)

D, (p)= {i[l (7 +vwi)} Do(p)

where ®, (p) is the remaining comultiplier of the function ®qp ()

n
after the removal from it of I (p% + wg?)..
K=1

The general problem of the approximate optlmlzatlon
D, (p) of a system in the presence of a random stationary
disturbance £ (¢) is thus solved with the assistance of the K (D)
image. Expansion of the stationary random process f(#) into
series (6) is a complex problem and it should be carried out on
the basis of -a preliminary examination of the process f(?).
So henceforward consideration is given to an assumed case

. in which the process () can be characterized by the presence

of several main periodic oscillations in the spectrum. In this
case the construction of systems satisfying the condition of
the K (D) image is facilitated by the limitation of #n. In a

number of practical examples of the use of the K (D) image ;

for dynamic systems of the damping type, the conditions of the

K (D) image are approximately satisfied only for -one n = 1.

The conditions of search of systems satisfying the requirements
of K (D) images may be effected on the basis of the statistical
properties of fi(t). In the above case the automatic control
system under consideration must satisfy the condition

K(D)- i a.,(sin(co,(t+go,()=0 (8)
K=1 -

Noting that the K (D) image is itself invariant to random
magnitudes of the series f(#) to the random amplitude ax and
phase @k, and depends only on the determined values of wy;
we -shall find the K (D) image for ¢x = 7/2 and ag = a®/2
(t— 1)

. » ) n
Condition (8) will then have the form K (D) X ag/2 cos

k=1
wgT=0 or K(D)R(tr) =0 where R (7) is the correlation
function of f(#). Thus the condition of the invariance of the
system to the disturbance f(¢), obtained on the basis of the
theory of the K (D) image, is equivalent to its invariance to the
correlation function R (7) of disturbance f (7). The conclusion
obtained is based on the expression of the stationary random
process f(#) (with a definite degree of accuracy) by a discrete
Kolmogorov series®, for which the corresponding spectral
density is also the sum of discrete values-in the form of §
functions. The possibility of wusing the discrete series (6)
determines the applicability of the formula obtained for the

case of an f(f) given by continuous graphs- of spectral

density.
The condition of invariance to a random functlon analogous
to the condition derived above, can be obtained if the random
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function is expanded not into a Kolmogorov series, as was done
above, but into a canonical series®*.

" The random function f (f) can be represented by its canonical
expansion

FO=m, OV, (1)

where m;,(¢) is the mathematical expectation of f(#), which will
henceforward be put equal to zero: V,, are uncorrelated centred
random magnitudes, coefficients of the canonical expansion,
and f () the coordinate functions of the canonical expansion.
"~ The random coefficients V, in the general form of canonical
expansion of a random function are determined by the formula®

V,=Q"F°()

where £, are arbitrary linear functionals, which must satisfy
the conditions of biorthonogality for the mutual ‘non-correlated-
ness’ of the magnitude V,; f°(¢) is a centred random function
(Fo(1) = 2, V, f%).

The condltlon of invariance of a control system to disturb-
ance f () will be written in the form:

Dy (p)-F()=0 (Qop((l?)#()) €)

The coordinate functions f (¢) in the general form of canonical
expansion of a random function are determined from the formula

, 1
12 0= 9O R, (@)

where D, is the dispersion of an elementary random function,
and 27 is an arbitrary linear functional, the lower index of
which signifies that this functional is applied to R; (1, 7), viewed
as a function 7 at a fixed value of ¢.

Substituting into (9) the values of the coordinate functions
and of coefﬁcients Ve

opt (D) Z Qufcv(t) Q(U) Rf (T) 0 (10)

(!7 is a functional conjugate with Q) The expression (10) is
represented in the form

ZQ(D)f (t) Dot (P) R (1)=0 1n
For the identical equality of (11) to zero it is necessary and
sufficient with FO(7) # 0, Qo (p) # 0, Ry () # 0 that Oope(p)
be the K (D) image of the correlatlon function R (z) or contain
it as a co-multiplier.

However, it should be noted that the representation of
random processes by a spéctral series (or canonical expansion)
will practically always have a limited number of terms. This
constraint - causes the appearance of non-zero deflections on
the output of the ‘invariant’ system (non-absolute invariance). -

The evaluation of this relation has its own _significance and
is not examined here.

Combined Tracking Systems with Variable Structure

Combined tracking systems. are one of the most significant
spheres of application of the principle of invariance in automatic
control. In the combined system [Figure 2 (a)], reproduction of

* The idea of this solution belongs to A. S. Shatalov
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the controlling action is implemented with the aid of a two-

channel system or a system with two cycles: an open-loop

cycle us (p) = K3(p) g (p) and a closed-loop cycle
K (DK (p) |
e AT DL

where K, (p), K,(p) are the transfer functions of the elements of
the closed-loop cycle, K;(p) the transfer function.of the open-
loop cycle, u, the output coordinate of the open-loop cycle and
x the controlled coordinate.

The transient processes in such systems can be described by the
linear non-homogeneous differential equation M(p)e = N(p)g(?)
where M(p) and N(p) are operator polynomials relative to p,

= d/d¢, ¢ is the error signal. The indeperidence of the error
signal from the control action g(t) is usually determined by the
condition

N(p)=0 .. (12)

in this case the forced component ¢ (¢) of the general solution
force

of the equation of the system is conformally equal to zero. T he
links with respect to the controlling action g(f) are selected in
such a way as to satisfy condition (12). This is usually achieved
by making the coefficients of the polynomial N(p) consist of the
difference of two magnitudes, one of which is determined by
the disturbance effect (parameters of the open-loop cycle). It is
practically impossible to satisfy condition (12) accurately.

An attempt will be made to solve this problem in another way.

_A tracking system will be constructed in such a way that the #-di-
mensional phase plane of a normal system of non-homogeneous
differential equations, by which it is described relative to &,

"where & = (g, &, ..., &), contains some (n— 1)dimensional
hyperplane S, and it will be required that the motion of the
state point in S .be described by a system of homogeneous
differential equations. Then, if the state point under any initial
conditions and for any forms of g(f) terminates its motion in
this (n — 1) dimensional diversity of S, the error of signal ¢ will
always tend to zero (¢— 0) for any g(#). In other words, the
controlled coordinate x(¢) will reproduce any continuous g(?)
without static error, and the requirements for the operator N(p),
determined by condition (12), will be absent. If the function g(#)
has a discontinuity at some moments, then slight dynamic
errors will appear at these moments. An attempt will be made

to solve this problem, using the principles of construction of

variable-structure automatic control systems!2,

Conditions of Invariance in Combined Tracking Systems with
Variable Structure - .

In the domain, G, of an n dimensional space ¢, ..., &, let
the motion of a dynamic system be described by a system of
non-homogeneous differential equations with a dlscontmuous
right-hand side -

$=7@g@> W)

é=(81: "':an)’gz(gls crey gm)’?;(fla AR fn)
=g (i=1,2,..,n—1) '

fy== ¥, awt Y UGETO &0

Here

"where

‘ b,-for(Zn: cjej>gi(t)>0T
ACET0) S -

b for( y

Jj=1

cjsj>gi(t)<0

a;,b;,b;*, ¢c; are constants, g;(f) is a function defined and continu-

ous on the whole time interval . Let the hyperplane S, set by the
n
equation Z ¢;&; = 0 divide the domain G into sub-domains

G+( Z cJ s, > 0) and G“( E c;e; < 0), in which the vector
=1

‘functlon f(& 2@®) of system (13) is constrained and for any

constant value of time ¢ on the approach to § from G* and
G- there exist its limit values f+ (£, 2(¢)) and f~ (¢, #(¢)). On
the approach of the solution &(f) to some domain U < S let
the vector functions f+ and f~ be directed towards the hyper-
plane S(fy > 0, f& < 0, where f5 and fy are the projections
of the vectors f* and f~ on to the normal to the hyperplane S,
directed from G~ to G*). Then, when &(¢) hits U there arises

the so-called sliding mode and the solution of system (13) does-

not depend on. a;, b;, b;*, g;(¢). In fact in this case, as shown by
Filippov!3, in the domain U~ there exists a solution £(¥) of
system (13), and .the vector d&/dr = f° (¢, 2(¥)), where f0 =

9, ..., f9), lies in the hyperplane .S and is determined by the '

values of the vector functions /*+ and f~.
From the condition that f9 (g, g(£)) e S there follows the
linear relationship of the components of the vector f°

n

Y, ¢;f)=0 B¢ 1)

j=
where f? is the jth component of the vector f° whence

. R __1 n—1 o '
= 2 cjfj 13)

Cn j=1

Hence the solution of system (13) for £(f) € U coincides with
the solution of the system of sxrmlar homogeneous dlfferentlal
equations

de — )
—= £) 16

S=T°® (16)
Here .
E=(&1,...58,)

.fj =8j+1(j=1323-"5

¢; are constants.

Obviously the solutlon of system (16) does not' depend on
a;, b;, b;*, g;(f). Use will be made of this property of the solution
of the system of non-homogeneous differential equations with
a discontinuous right-hand side for the construction of a com-
bined tracking system with variable structure.

1=
n—l),fn‘):c— z ]j+1

ji=1

n
t In the case ( # c,-e,-)gi(t) —0
j=1

v (5, 8(t) = b, for (_Elc,- e,-)gi(t)—>+0
N Jj=

n .
y; (5, 2(t)) = b} for (_.Elcj 85) &;(t)—>—0
N j=

532/4

Declassified and Approved For Release 2012/12/14 : CIA RDP80T00246A023500250001 3

e




Let the structure, selected in a definite way, of the open-loop
cycle of a combined. tracking system [Figure 3(b)] change
n

stepwise on some hyperplane S = X c¢;& = 0 in such a way
j=1

that the movement of this servosystem is described by a system

of non-homogeneous differential equations with a discontinuous

right-hand side (13), where /; (€, g(¢)) = F [D; (§, g

Kifor<z cj£j> g;(H)>07
j=t. .
(i=1,2,...,n)

cjsj> g;(H<0

K; K}* are constants, determined by the open-loop cycle para-
meters. It is assumed (a) that the domain U exists, it includes
the origin of the coordinates, and the solution of the system of
differential equations (16) satisfies the given requirements on
the quality of the process of control (control time and maxi-
mum dynamic error of the system must not exceed certain pre-
determined values;) (b) there exists a sufficiently large domain of
initial conditions under which the solution of the system of

(8,9 ()=

K} for( >

i=1

equations (13) hits the domain U; (). in the domain U there do:
‘not exist trajectories serving as sectors of limit cycles w1th a

partially sliding regime.

Then the solution of the initial non-homogeneous system of
differential equations (13) will depend.on the controlling action
g:1(9) and the parameters of the closed-loop and open-loop cycles
only up to the moment when £(¢) hits the domain U, where the
solution coincides with the solution of the similar homogeneous

system of differential equations (16) and depends only on the

coefficients ¢;. Thus in this case, in the reproduction of the con-
trolling -actions g,(¢) the magnitude & — 0 on a finite interval
of time ¢, and the controlled coordinate x(#) reproduces g, (¢)
without static error. The quality of the process of control in
such systems depends loosely on the variation of the parameters
of the open-loop and closed-loop cycles, since the solution &(?)
depends on these parameters only until it hits the domain U. It
must be noted that in the systems under examination, the open-
loop cycle for g;(#) # 0 in isolated cases exerts an influence on
the stability of the tracking system. In particular, as an example
will demonstrate, even when the change of the parameters of the
closed-loop cycle leads to the loss of the stability of the closed
loop, then on the whole for g;(¢) # 0 the open-loop cycle with
variable structure will ensure, in some domain of initial con-

ditions, the stable operation of the tracking system. The above-

-listed properties of combined tracking systems with variable
structure advantageously distinguish them from ordinary-linear
combined tracking systems.

AnExample of a Combined Traéking System with Variable Structure

Let the equations of the individual components of a com-
bined servosystem with variable structure have the form -

t In the case ( ¢ s)gt(t)—O
. n

(pi(gig(t)):Ki for (.Zlcje,»)gi(t)e +0
j=

i _
D, (zg() =K} for (,Elc,-sj)gim»—o
! P
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pi=ki, e, T, T4 )+ (T + 1) g (D + g1 (D=kaus
+ K for(c e, +c,8,) g, (1)< 0*

O (& g ()= .
o — K for (c e +¢58,) g, (1)>0

where k;, ks, K, Ty, T,, ¢;, ¢, are constants. The block
diagram of the system is depicted in Figure 3(a) and (). In this
case the combined tracking system, after the elimination of the
intermediate coordinates u,, y,, 43, x is described by the foilow-
ing system of non-homogeneous differential equations with a
dlscontlnuous nght-hand side:

. ) =7 E30)
Here .
'=(81,82),§=g1,gz,gs‘),f=(f1,fz) an
fi=¢z, f,=—2b&;—wie; +g3 (1) +2bg, (1) ‘
+¥1 (& 2. (D) g ()
where . .
T,+T. 5 1+kik,
2=Rn 9L,
W~ 1+D (5 g, (D).
(e (t)-—‘Tsz—%~

We shall examine the behaviour of a combined tracking system
with variable open-loop structure which reproduces various
controlling actions g,(¢), while the parameters of the transfer
function of the closed-loop cycle K,(p) can be chosen within
wide limits.

The phase-plane method is used for analysis of the system

‘Let the controlling action g, (f) = 4, where A4 is a constant and
. the parameters of the tracking system k,, k,, Ty, T, K are

selected in such a way as to satisfy the following conditions:

Kky>1 ' (18)
b2 @ (19)
R N % )

C2

Then for g,(¢) > 0 the phase plane of the system will have the
form shown in Figure 4(a), (b) and (c). In this case, under any
initial conditions the state point will tend to hit the straight
line ¢, & + ¢,&, = 0 which. serves as the boundary of disconti-
nuity of the right-hand side of eqn (17) while on the. boundary
of discontinuity the vector functions f+ (sheet I} and £~ (sheetIl)
are always directed towards this straight line and, hence, when
the state points hits it the solution of eqn (17) coincides with
the solution of the similar homogeneous differential equation

dé 0/~
ai‘—f ® ' 29
* For (¢, 6, - ¢36)g,(1) =0

D, (5,8,(1)) = + K for (c, &, + cy8) £,(1) >+ 0
D, (8:31(7)) = —K for (c; 6, + ¢, 8,) g:(t}>—0
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Here

82(81, 52)>70=(f10’f20)
f10=82,f2=z—232

Thus the right-hand side of the equation determines the motion
of the system only up to the moment when the staje point hits
the boundary of discontinuity, and then the motion of the
system can be reflected by an equation without a right-hand
side (21) or, after the appropriate transforms, by the equation

(22)

In this case, therefore, static error will be absent. We shall
follow the variation of the static and dynamic properties of the
system as the parameters of the transfer function of the closed-
loop cycle K,(p) vary.

Let the parameters of the closed cycle vary in such a way
that the closed loop of the system becomes unstable, e.g., con-
sider that the sign is altered in front of the term 2b ¢, in eqn (17).
In this case the system will also become unstable for any para-
meters of the linear transfer function of the open-loop cycle.
When there is an open-loop cycle with a variable structure, the
phase plane will have the form shown in Figure 5. As before,
the state point, under any initial conditions, will hit the straight
line (22), on which there exists a finite length mn which includes
the origin of the coordinates 0, where the conditions of the
existence of a sliding mode are satisfied. The tracking system
will thus be stable. For a particular set of initial conditions
the process will run without overshoot, and as before there
will be no static error. Thus the variable-structure tracking
systems under consideration are insensitive in relation to
variation of the system parameters.

It is not difficult to show that for g(¢) < 0 all the examined
properties of the combined tracking system with variable structure
will remain unchanged. We shall consider whether these pro-
perties of the system are preserved when reproducing other
forms of controlling actions, e.g., g;(f) = xt, Ae* where o, oy
are constants. ,

In this case one will be dealing with a non-stationary phase
plane. By examining the field of the tangents to the phase
trajectories for various fixed moments of time ¢, the change
of the directions of the vector functions f and f can be followed
and thus the answer given to the question of the existence of a
section of sliding mode mn on the straight line (22) and the
landing of the state point on this section.

Let the control action g;(¢) = «1.

We shall examine the static and dynamic properties of a
tracking system for the first case of combination of closed-loop
cycle parameters. For the instant r = 0 [Figure 6(a)] the
direction of the vector functions f+ and f~ in the vicinity of the
straight line (22) is such that the section of sliding mode mn
on straight line (22) is everywhere absent. However, with the
time, beginning with some ¢ = 7, the field of the tangents
to the phase trajectories changes in such a way that the
vector functions f* and f~ in the vicinity of the straight
line (22) are everywhere directed towards this straight line
[Figure 6(b)]. Since, with time [Figures 8(c), 9(c) and 10(c)]
the inclination of the tangents to the phase trajectories is
deformed in such a way that at the limit it tends towards
straight lines [Figure 6(c)], the above-mentioned static and
dynamic properties when the system will also be preserved when

€181+ €26, =0

the system is reproducing a controllin action of the kind underg
review. Let the controlling effect be g,(f) = Ae*’. From the
analysis of the variation of the fields of the tangents for
various instants ¢, it follows that even when reproducing a
transcendental controlling action, static error is absent.

With the aid of an electronic simulator we shall study the
behaviour of such a combined tracking system with a variable
structure in the reproduction of controlling actions of the form

g (D=A,at+ Ay, A,e™" where A, o, Ay, 0y, A,
1 1%, A,

are constants.
Let the parameters of the tracking system equal

T,=1, Ty=1, k=1, k,=1, K=2

As follows from the oscillograms in Figure 8(a), (b) and (c¢)
all the controlling actions under review are reproduced without
static errors with a good quality of the transient processes.

We shall change any one of the parameters of the controlled
plant, e.g., k, from the value k, =1 to k, = 10, and follow the
change of the static and dynamic errors of a combined tracking
system with variable structure. As can be seen from the oscillo-
grams in Figure 8(d), (¢) and (f) the static properties of the

‘system have been preserved in this; as before, it reproduces,

without static errors, all the types of controlling actions under
consideration, while the dynamic properties have not suffered
any qualitative changes—the time of the transient processes has
been slightly reduced.

Conclusions

The paper considers the invariance of automatic control
systems in the presence of statistically given disturbances. The
invariance conditions, obtained on the basis of the K(D) image
theory, have been generalized for the case of statistically given
disturbances. For stationary systems of automatic control and
stationary disturbances f(¢) the conditions of the K(D) images
in relation to the disturbance prove to be equivalent to the
condition of the K(D) image in relation to its correction func-
tion.

A new principle has been proposed for the design of in-
variant tracking systems in relation to continuous functions of the
controlling action, which ensure the absence of static error. It is
shown when using an open-loop cycle with variable structure
that it is possible to reproduce, without static errors, an extensive
class of controlling-action functions. When selecting the open-
loop cycle transfer function there is no need to satisfy the
classical conditions of invariance, which require the right-hand
side of the non-homogeneous differential equation to vanish.
This property of the systems under consideration makes it
possible to build invariant tracking systems without differentia-
tion of controlling action. The variable-structure combined
tracking systems considered are insensitive to the variation of
the system parameters within a certain range.
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Time-optimal Systems with Random
Noise Disturbances
V.V. NOVOSELTSEV

Introduction

This paper examines the problem of optimal control of a plant
with constant coefficients, having one input and one output:

Here xis an n-dimensional vector which defines the state of the
plant, v is the control signal sent to its input.

Functions f! (x) and f2(x) are defined and continuous for
all x and continuously dlfferentlable with respect to all coordin-
ates of vector x: .

xi_=dix/dti

Equation (1) is linear with respect to v. and non-linear with
respect to x, and is therefore somewhat more general than the
equatlon

X=Ax+Bu

usually considered for the case of a scalar control signal «.

~ Figure 1 shows a block diagram of the system under con-
sideration in the presence of interference; the following symbols
are used: :

" A—controller
B—controlled plant (1) :
H—inertia-less plant coordinate metering channel
G—inertia-less control signal-to-plant channel
Z—master-signal channel
h, g and z—set random mterference in channels H Gand Z
respectively -
u—control signal (scalar)
v—noise-distorted control signal
xg—true state of plant
x,—observed state of plant
x,—set point of system phase space .
x—vector of error x ='x, — x;

The true-state point x; has to be shifted into some small
vicinity of the set point (origin of the coordinates). Then in the
optinal system the following equality must be satisfied!: 2:

. E{T[x9]} =min

3

The minimal value of E{T (x)} will be denoted by T* (x).
Then in the optimal system

E{T [xV1}=T"[x] )

Here x® is the initial value of the error vector.

However, considerable difficulties are involved in calculating -

the system directly from ‘this criterion. It is far simpler to use

the criterion of the minimum time of the transient process for the
mathematical expectation (the minimum time required to bring
the system to a state of statistical non-displacement)? %. Usually

. considered for the determination of this time is the relationship

X=f1(x)+v (%) O

&= E{x}, which describes the transient processes in some
equivalent system without interference. A system in which is
provided the minimum time of the transient process for the
mathematical expectation 7' (§) = 0 (x) .

6 (x)=min=0*(x) ?3)

will be termed optimal with respect to the criterion *. A system
in which condition (2) is satisfied, will be termed optimal with
respect to the criterion 77*.

Functions T* (x) and 0* (x) are defined and continuous for

‘all points of the phase space and T* (x) > 0, 6* (x) > 0 while

T*(x)=0%(x)=0

when, and only when, the point x lies in the set vicinity of a
finite point .

2—:::(":’)2 <é? | » (4).

Consideration will be given to the state of the control
system only at discrete moments of time, as in-solving similar
problems by the dynamic programming method. For this the
small interval of time A will be introduced and it will be con-
sidered that on this interval the values of the control action and

. the interference signals remain invariant, but at moments of

time ¢ = kA they change stepwise. Interference on neighbouring
intervals will be considered independent.
Control action u is constrained with respect to the modulus

lul<N ’ %

To simplify the examination it will be assumed that both u
and v are quantized in level with a sufficiently small pitch of
quantization, and:

ueQu) Qu)={ug,uy,....,u,} T<0

veQ(®) Q)={vy,v,,...,

v} l<oo

In such a case it is convenient to describe the influence of

random interferences in the following way.

Since at the controller 4 there arrives only the value of the
error x distorted by the noises along channels H and Z, instead
of the correct, necessary control action u at each moment of
time another control action, generally speaking distinct from
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uy(xM), will be chosen. The probability of the choice of control
action  at a given moment of time, when in fact control action
©®, denoted by p,°, is optimal, depends in the general case
on the position of the image point x in the system phase space.
Thus, in a relay system this probability is heavily influenced by
distance of the image point from the switching surface. When
this distance is great, the probability of error in choice of the
control action is small, but as this distance is reduced even very
weak interference can lead to error in the choice of control
action. If one denotes the probability of an event which consists
in the appearance on' the output of A4 of signal «,,, whereas the
optimal choice would be #° (x) = u; by p,;, then .

“Pn(x)Pu (x)"'plr(x) )
1 Puou () = | P21 (%) P22 (X) ... P2, (X) ©

I Drt (X) Dr2 (x) DPer (x)

The control action u (x(*) =u,, chosen at the kth moment by
controller A reaches the plant along the channel with noisy G,
where, under the influence of interference g coptrol action u
becomes control action V. The probability of the transforma-
tion of #; into v; will be denoted by g;;. Then

"

411912 ---9u
19wl = 921922 -+ 92 @)
qu qr2 qu

Both matrices || p,0,®]| and | g,,| can be joined into one, which
will fully describe the action of all the interference upon the
system:

1wl =lIPE Iqull - (®

Matrix (8) determines for each point of the phase space the
probability of the arrival at the input of the plant of control
action v;, when #; is the optimal action.

Basic Relationship for Tim‘e-opﬁmal Systems with Interference

In the optimization of control systerhs with respect to the
criterion T* by the dynamic programming method, the following
equation can be obtained:

T*[x¥]=A+ min T*[x**V] )
u®) e Q (u) .
Here x( and u® denote the values of x and « on the kth
interval of time. Equation (9) is the basic relationship in solving
such problems?: ®, This relationship will be given another form
more suitable for the purposes of this paper®.
In.open form eqn (9) is written as follows:

T* [x(k)] =A+m1n { i Pmj (x(k)). T* [X(k+l)]]} . (10)

m (=1
m=1,2,...,r
In the latter equation min {«,,} denotes the minimum of the

numbers «,,, and [x(*-1] the position of the image point at the
(k 4+ 1th moment of time, provided that at the kth moment

the point was in the position x(® and at the plant input there
arrived control action v;. Thus the mth term of the expression
in brackets is snnply the mathematical expectation of the time
of the transient process in the choice at point x® of control
action u,,. Averaging is performed for all the states of the system
at the (k -+ 1)th moment of time. The probabilities p,,; in (10)
are clements of the matrix ||pug.|, Which is determined by (6).

By introducing the sampling interval A eqn (1) can be
rewritten in the form

xEV=x® Lol pyp? i=0,1,...,n—1

(k+1) v(k+l)

where, for brevity, is writtén A - f1 =¢'; A - f% =% In sub-
sequent operations the relationship to x(*), where possible, is
dropped. If in the expansion of T* into a series, it is possible
to limit ourselves (for sufficiently small A) to. terms of no hlgher
than the first order of smallness, then

T* [X(k+1)]jET* [xgc+1), x(1k+1), . (k+1)]J
& k k k
=T*[x§, xP, ..., x¥

n—1 aT* x(k)
[ o L Ty

+Y

+Uj¢i2 ] 1)
Substituting (11) into each bracketed term in (10), after
elementary transforms

% (k+1) & o ldT*
Z Pmj 7 [x ] =T"+ Z P;

n—1 dT* 1
+2 07 Y Puvie (12)
i=o ( 0x; j=1

is obtained. :
The following notations will be introduced

om (x*)=E {olu,, (xP)} = }l: Py (x)0;  (13)
i=1 ,

[£0+D], = E {(x®+ D}x®, g (x0)} (14)

Here v,,* (x(®) is the mathematical expectation of the signal v,
and [£(*-D],, the mathematical expectation of the random

_vector x(**1) for the selection at the point x(® of control
‘action u® = u,,. Then, on the basis of (11) (14), the initial
‘relation (9) can be written in the.form:

T*[x®P]=A+min {T*[£**V],} m=1,2,..,r ~(15)
' (m) )

Control ‘action u,,, with which the minimum is reached; is the
T*-optimal control action at the point x(*) of the system phase
space.

Equation (15) is the basic relation in examination of time-
optimal systems with noise present.

The optimal control action at each moment of time must be

-so selected that the magnitude of T*[E*V)] at the next step is
minimal.
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Control Algorithm in a System Optimal with Respect to
Criterion T'*

Consideration is given to the point x(*) and the sequence
of control actions u® = u,, u®*V = uy, ..., u®*+S = u, under
the influence of which the image point shlfts consecutlvely from
position x(* to positions [EF+D,, [EEED] o ., [EEF)] 0, ., 4
Let the sequence u,, ug, ..., 4, be selected in such a way that:

(4) The point [£*+8) ;... _lies in the vicinity of the set point (4).

(B) For all sequences u®, ut*+1) . 4+ where d < S,
condition A is not satisfied.

Then the sequence Jéa, Ugy ooy Ug 18 optimal with respect to the
criterion 6*, and .S is the number of steps in the optimal transient
process with respect to the criterion 6*. It will be temporarily
assumed that there exists and is known a control algorithm
optimal with respect to the criterion 0* which permits the
construction of such a sequence of control actions for any x.

The recurrent relation (15) will now be apphed to the point
[£GAD],:

T* [+ D], = A+ min {T* [E4* D]} n=1,2,..,r (16)
. (n) .

Substituting the resultant expression back into (15), one obtains:

T* [x®]=2A+ min {T* [¢**?],} (17)

(m, n)
m=1,2,...,r;n=12,..,r
similarly

T*[x®]=s-A+ min {T*[E**9],, ...}
(mym, 1) T (18)
mm b

m=1,2,...,r;n=1,2,..,r;1=1,2,..,r

One now selects m = x,n = ﬂ; ..., = 0. Then, by virtue of
condition A, the second addenda in the right-hand side of (18)
vanishes, and, bearing in mind B,

T* [x(")]=S-A 19

can be written. :
Thus in the case under consideration the duration of the
transient process with respect to criteria 7* and 0* is identical,
and at each point of the phase space the control actions optimal

with respect to 6* and T* coincide.

The control algorithm optimal with respect to criterion 0%,
ensures the optimality of the system with respect to criterion T*
as well. :

Consideration is now given to the construction of algorithms

 optimal with respect to the criterion N. The plant studled is

linear and is described by the equation

n—1
X;= 3 a;X;
/<o

xll=v

. i=0,1,...,n—1 (20)

It will also be assumed that the control algorithm, which
ensures time-optimality in the absence of interference, is known
and set in the form of a switching surface in an n-dimensional
space. )

W(N’xo’xls"'axn—l)=(_) ‘ (21)
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Equation (21) contains in an explicit form the magnitude N from
eqn (5). In the absence of interference the optimal equation has
the form : ’

u®= Nsigniy (N, x) (22)

and only the values of v == u = -+ N reach the plant input.

If on the control system (20)—(21) there are noises, then in
place of a system with interference, an equivalent system without
interference can be considered, in which instead of the coordin-
ates x (7) the relationships & (f) = E{x (t)} are considered. The
optimal control action in such an interference-free system will
be optimal with respect to the criterion 6* in the initial system
with. interference, and will hence be optimal with respect to the-
criterion T*.

The maximum and minimum values of the signal »* which
reaches the plant input when | 2| < N will be denoted by vpr*
and v,,*.

For the symmetrical matrices (6)-(8) var* = — v,,*. For
simplicity, the examination will be confined to the case when the
signals var* and v,,* are obtained following the selection on the
controller of control actions # = + N and u = — N respect-
ively.

Introduced here is the coefficient of efficiency of control in
a system with interference, which has an obvious sense:

p =B o

If function y (x) is defined for all x, continuous and continuously
differentiable with respect to x, then it is convenient to examine
as an equivalent system a system for control of an equivalent
non-linear plant. Eqn (20) is then written in the form:

n—1

x—ZaJxJ,x =y(x)-u (24

<o
i=0,1,...,n—1

and the constraint | # | < N is retained.
" The optimal control of plant (24), with the constramt
| «] < N, conforms to the maximum principle’. :
It is noted that replacement of eqn (20) by eqn (24) is not
obligatory. Using the results obtained in Fillipovs’ work®, it is
also possible to examine eqn (21) directly, but with the replace-
ment of constraint (5) by a constraint of more general form:
ueQ (x).
The following three cases of the action of interference upon
the system are considered:

(1) In the system, interference is present only in channel G.
Here, as follows from (7), y = const, and constraint (5) is replaced
by the constraint | u | < yN.

The plant. equation remains unchanged. The optimal
switching surface has the form

'//(')’N:xmxl:;--axn-l)r‘o (25)

(2) Interference is absent from the channel G, but the
influence of interference 4 and z manifests itself in the appearance
of additive noise along the coordinates xg, Xy, t.., X, ; at the
controller A there arrive the values
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Xo =X, +eqno

x¥ =x; +eqmn

* ) :
Xp—1=Xp— 1+nn 1

wh11e the random component is constramed with respect to the
modulus:

Il <n¥,  i=0,1,..,n—1 @)

In:this case it can be shown that the optimal switching line
in a second-order control system has the form:

Y (N, X +1g sign xg, X, +171 signx,)=0 e

~ Optimality is ensured for all points. of the phase plane
sufficiently remote from the set point. It may be assumed that

an equation -analogous to eqn (27) is also valid for a system -

controlling plants of a higher order with real roots.

(3) In the system there is present both interference in the
channel G and unconstrained interference 7.

In this case it is possible to construct approximately optimal
control systems, in which the duration of the transient processes
exceeds the minimum possible time by not more than the
preset &.

One such system is considered in Example (3).

Examples

(1) The Optimal Second—order System with Noise in the Commum-
cations Channel

Consideration is given to a control system which has been
thoroughly studied for the case of no noise; the block diagrams
of this are given in Figures 1 and 2.

The equation of the optimal switching line of the system
without interference has the form:

2

X1
Xo=— 5EN sign x (28)

It will be taken that under the influence -of interference g-

the control signal is able at each moment of time to adopt
independently one of the following values

a;u with probability p,
a,u with probability p, (29)
a,u with probability p,,
(u adopts the value 4 N). In this case
= Z 'ai Dbis
i=1

and in accordance with (25) the equation of the optimavl switch-
ing line in the system with interference (29) has the form

2

(2) The Optimal Second-order Control System with a Digital '

Computer Inside the. Control Loop

Consideration is given to a second-order plant control sj}stem
a block diagram of which is given in Figure 3. The optimal
switching-line equation® has the form:"

' o T, ﬂ T2
[1+Fu—a¢Kaw] =[1+F0—wJKﬂw} G

here a, and b, are the values of @ and b at the end of the second

- section of the optimal trajectory,

F is the amplifier saturation level.

It is assumed that the op;timal control of the plant (Figure 3)
is realized in the loop containing the digital computer, so that
the coordinates « and f are determined with an error, and the
values « + n, and 8 + n, reach the controller input.

The random signals #o and ng are, for example, quantization.
noises and on each interval adopt one of the evenly distributed

values with a probability density:

1
if [n, gl <A,
p(n'a,ﬁ)= 2Aa B | ﬂl g

0 1f [y, gl >4, 4

The optimal switching-line equatlon in accordance with (27)
has the form

F(l—a,/K;iF) F(1-b,/K,F)

: Ty _ . To
‘ l:1+ a+Aasxgna] =[1+ B Aﬁs;gnﬂ] : - 33)

(3) The Second-order System with Noise in Channel H

The block diagram in Figure 4 is considered. Here in the
channel serving for metering the coordinate x; the additive
interference 7 is a Gaussian noise with zero mean value:

1 exp{—— n’ } (34)
T 203

It is required to ensure time optimality with accuracy of no
less than 5 per cent with an aperiodic transient process.

It is known that transient processes without overshoot in
the system under review correspond to the switching lines

pn)=

2
sign x, - (39

\

Xo=rN

when a < 2, while a 5 per cent extension of the transient process
in the processing of step signals is obtained when a = 1-650.

In a relay control system the coefficient y (x) is determined

by the equation
Y(X)=1-2pg (x) (36)

where pg (x) is the probability of wrong choice of control

, X .
Xo= — ‘”‘_,,1,—— S1gn x (30) action at the point x:
2 kN ai .i L .
2KN 2, ap pu(x)=P {signu® (x) = —signu (x)}
534/4
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The magnitude of p (x) rises as the distance r; = x;, — x,
increases, and at some r,* becomes greater than 0:825. Here
X1n 18 the coordinate x, of a point lying on the switching line and
having a coordinate 1dentlcal with the point under con51derat10n
Xon = xO

'II (XOm X1ns N)=0

For all the points x, for which r; > r;, the magnitude of
y (x) will be replaced by y* = 0-825. The resultant control

system with interference will possess the property, that for all _

~x y (x) < 0-825, while for r; < 1}, y < 0-825.

The reduction of y (x) when r; < r{* stems from the presence
of the constrained interference #* which only manifests itself
when 1r <r*

In*j<ry (37
_ The examination of a system of control of a plant has been
arrived at with the equation k/p? under the constraint

|ul <0825 N

[in such a system the switching-line equation has just the form

" of (35)], while on the system there acts the constrained inter- .

ference (37). It only remains to find the magmtude of r; and
substitute it into eqn (27).
From the general formuia

Pl{a<n<p} =%[q’ <anli/2> - <a,,oi/2>]

taking (36) into account, one obtains

'.vyfq’(azz)

‘and for y = 0-825 one has r = 1-343 o).

" The equation of a switching line which is optimal w1th a

accuracy up to 5 per cent has the form:

(x,+1.343 o, sign x,)? .
xo =~ 1~650”kNg .1) SIEN Xy

L (9)

Results

Figures 5 and 6 show the graphs of performance of a step
signal of 20 V amplitude by a system controlling a plant 1/ps,
N=20V.

Figure 5 corresponds to Example I, and in Figures 5(a)
G ig B8

Step A Outpt.;t

signat X signal x(t)
— u v P2 -

Figure 1

; 'Figure 2
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and 5(b) y = 0-645. The sw1tch1ng line equation in Figures 5(a)

and 5(b) has the form:
x?

40 (39)

Xo= —_Lsignx,.

The optimal transient process (Figure 5).is ensured in a system

with iriterference following the choice of the switching line
x2
T 258
thures 6(a), (b) and (c) illustrate Example 3 for ¢ = 4 per cent,

= 0-90. Figure 6(a) shows the performance of a step signal
of amplitude 20 V without interference with switching line (39).
Figure 6(b) demonstrates the performance of the signal for
on = 143 V and a switching line which is optimal without
interference. The optimal (with accuracy up to 4 per cent)

transient process without overshoot is shown in Figure 6(c).
The -switching-line equation is .

Xo= —=poSignx,

e (x4 +23-6sign x,)?
o .36
The frequency band of the noise signal f, is'10 cfsec.

sign x, “
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Dual Control Theory Problems .
A.A.FELDBAUM |

Introduction

The controlling device in an automatic system solves two
problems that are closely interrelated, but which differ in char-
acter. In the first place, on the basis of information that is fed
into it, it clarifies the properties and state of the controlled
plant. In the second place, on the basis of the properties dis-
covered in the plant, it determines which steps have to be taken
for successful control. The first task is that of studying the

plant; the second task is that of adjusting the plant to the

required operating conditions. In the simiplest types of systems,
the solution of one of.these problems may be absent or have a
simple form. In complex cases, the controlling device should

solve both indicated problems. Below are considered problems

involved in the construction of optimal devices that solve both
problems simultaneously. )

Optimal systems may be divided into three types: (@) optimal
systems having complete or the maximum information possible
about the controlled plant; (b) optimal systems having in-
complete information about the plant, and with an independent
or passive storage of it in the control process; (¢) optimal
systems having incomplete information about the plant, and
with an active storage of it in the control process.-

In order to clarify this classification, it is necessary to de-

termine what is meant by information regarding the controlled
plant. In Figure 1, the controlled plant B is shown in the shape
of a rectangle; in it, x is the output magnitude, u is the controlling
action and z is a non-controlled disturbance. If the object has
- several inputs and outputs, then the magnitudes x, «, z must be
considered as vectors.

The dependence x=F(u,z) [¢))
may assume the form of a relationship between the values of x, u, z
at the same moment of time; either the form of a differential or
some other type of control. In the general case, F is an operator.

Information regarding the plant is gathered from the
following elements: (a) information about the plant operator
F; (b) information about the disturbance z, which acts on the
plant; (c) information about the state of the plant—for example,
about the coordinates of the point that represents the state of
the plant in the phase space; and (d) information regarding the
control purpose.

The last-mentioned information element should indicate
the ideal that is to be attained, and also the ‘price’ of a deviation
from this ideal. For this reason, the control goal may be con-
veniently presented in the form of a requirement for the mini-
mization of some functional Q, which depends on the character
of the x, u, z processes, and also on some externally assigned
control x* (of the given action). '

Below is a statement limited by conditions of this type:

Q (x,x™)=min

-

Let Q be called the optimization criterion. Set the require-
ment, for example, that the ideal process x be identical with x*,
and that the ‘cost’ of the deviation from the ideal be expressed
by the formula:

T

=c [(x—x*)*dt 3)

0
where ¢ and T are constants. Expression (3) is a partial example
of the optimization criterion. A system called optimal in which
the minimum of the criterion Q is realized, while fulfilling
the additional conditions that characterize the problem—for
example, that # and x belong to some admissible domains R (1)
and R(x), respectively.

Complete information regarding some arbitrary dependence
implies absolutely accurate knowledge of it. For example, com-
plete information about some time function or other, f(z),
denotes that its values are known for any arbitrary values of .
It is considered below, that complete information is available
regarding the operator F, and also regarding the optimization
criterion Q. All that is unknown and unforeseen in the plant is
attributed to the disturbance z, and what is unknown 1n the
control goal—to the assigned control x*..

Theories regardmg optimal systems, with complete informa-
tion about the plant, were developed in a number of papers®:4.
In the theory regarding systems with an independent storage of
information about the plant, consideration was given, for the
main part, to closed-loop systems. Here statistical study methods
were introduced® 5 7.

Problems have been considéred® ? that pertain. to the third
type of optimal system theories. The theory involving systems
of the third type contains characteristics that are common both
to theories of the first as well as to those of the second type, and
which therefore unite them to a certain extent. However, the
third type of theory is also characterized by its own specific
features.

The block diagram, previous]y studied® 9, is shown in Figu-
re 2. A closed-loop system is considered, in which the operator
of the plant B and the optimization criterion Q have been as-
signed. Plant B is acted on by a random disturbance z, which
cannot be measured directly. The controlling action « is ad-
mitted from the controlling device 4 to the plant B, through
the connecting channel G, where it is mixed with the random
noise g. For this reason, the action v, at the input of the plant
B, is not equal, generally speaking, to the magnitude ». Further,
information regarding the plant’s state x goes through the
connecting channel H, where it is mixed with the random
interference /. The output y of the connecting channel H is

“admitted to the input of the controlling device 4. Action x* is
" also admitted to the input of device A4 through channel H*,

with noise A*.
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In the circuit shown in Figure 2, processes are possible that
have been considered in the theories of the first two types. A
study of disturbance z, i.e., essentially, of the changing char-
acteristics of plant B, may be carried out in the circuit of
Figure 2, not by means of passive observation, but through an

active method, by means of rational experiments. The plant is’

“felt’, as it were, by the u actions, which have a preceptional
character, and the results y of these actions are analysed by the
A device. The purpose of these¢ actions is to promote a .more
rapﬁd and accurate study of the plant’s characteristics; this can
develop a better principle for controlling it.

However, the controlling action is necessary not only for the
purpose of study, but also for directing and adjusting the plant
to the required operating conditions. Consequently, in the
circuit in Figure 7, the controlling actions should have a dual
character; to a certain degree they should be studying actions,
but to another degree also directing actions. That is why the
theory underlying systems of this type is called a dual-control
theory. . . :

It is precisely this duality of control that constitutes the
physical fact distinguishing the third type of optimal systems
from the first two. In the first one, dual control is not necessary,

'in so far as the controlling device without it possesses complete

(or maximally possible) information about the plant. In the

second type of system, dual control is impossible, because the
information is stored by means of observation alone, and the °

rate of its storage does not depend at all on the strategy of the
controlling device.

Setting Up the Problem

. Theoretical problems are considered below only for systems
that are time discrete. All the magnitudes indicated in the circuit
in Figure 2 are considered only for discrete time moments, =0-1,
2, ..., n, where n has been fixed. The value of any arbitrary
magnitude for an S discrete time moment has been provided
with an index S—for example, x;, X, ,, etc. The transmission
lines of all magnitudes are assumed to be single-channelled, and
the plant B is considered to have no memory. Therefore, its
equation may be written thus:

xs=P- (vs> Zs) . ’ (4)

A generalization of the conclusion set forth below, for more
complex plant cases, with several inputs and outputs, and also
for plant having a memory, may be carried out in the same way

. as was done previously®.

Let A, h, and g, represent a series of independent, random
magnitudes with invariable distribution densities: P(hy), P(hy),
P(g,). Further, let:

z,=2,(s, i) C®

xf=x(s,2) - ®

where the average u, and average A;, in contrast with refs. 8and 9,
are not random magnitudes, but discrete vector Markov random
processes. In other words, the average u; and average A are
vectors: '

and

’

ué and ui, in the general case, are mutually interrelated, scalar
Markov discrete processes. The same holds for A} and 2.
However, the vectors average u,, average A, and also, noises
h¥, h, g, are considered independent.

Consider the Markov process characteristics average u; and
average /, as having been given. This implies that one has been
given, as the initial probability densities, P, (average uy) and P,
(average A)) where ¢t = 0, as well as the transient probability
densities P (average pu;i/average u;) and P (average Aof
average ;).

The methods for combining the signal and the noise in
blocks H*, H and G are considered as known and invariable,
and the blocks themselves as having no memory. Therefore:

v, =0, (5, )3 VE =y (B, x5); .=y, (he x) )

The control goal is determined in the following manner: let
the specific loss function (the ‘cost’ of deviation from the ideal),

which corresponds to the s time moment, have the form:

W, =W, (s, %, x5) (10)

Further, let the overall loss function W, for the entire time
period n, be equal to the sum of the specific loss functions:

s=n . .
W= z Ws‘ (S, Xss x:k) ' ! (11/)
s=0 . .
A system is called optimal for which the average risk R
(mathematical expectation M of the magnitude W) is minimal.
The risk magnitude is expressed by the formula:

s=n s=n i

R=M{W}=M{Z W, % x:)};si"M{Ws}: SR, (12)

The expression R, = M (W) is called the specific risk in the s
cycle. The magnitude R plays the part, here, of the optimization
criterion Q. ' .

Introduce the tentative vectors (0 < s << n):

. N Y
Uy= gy tyy .ees ) X = (X, X5y iy XT)

- . > .
Us=(Uo,U1,.-.,‘Us); Vs =(y05 )’1>-~~:ys) ’ (13)
>

% * *
) xs=(x0,x1,...,xs); ys*=(J’o,}’>1k,-~,ys)

and the matrices of average vector u,, average vector A, which
are made up of the vector columns of average u;, average A

ﬁs=(ﬁ0’ﬁ17 :ﬁs): Z_sz(zo’zl’”"zs) (14)

Consider that the control device, in the general case, possesses
a memory. In addition to this, assume, for general purposes,
that the algorithm of this device is a random one. The term
‘random strategy’ is also employed. This implies that the value
u is a random function of the magnitudes y, and [J§ which were
admitted to the input of device 4 during the preceding moments
of time, of u; ( < s), and also of the values y§ (j < s). It is
required to find the optimal probability densities:

Ps(us)=ps(uslas—l??s—l:is)(OSsSn) (15)

Bs= gy - 15) v ™. The problem consists in finding such a series of functions I,
and » in the case of which the average risk R will be minimal. Inasmuch
A=(A,, ...,'/'L's) ) (8) as I, is the probability density, therefore:
’ 536/2
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[ Ty(u)d2(u)=1 (16)

R (us)
where Z (u;) designates the region for the magnitude changes
u,, and d Z (u;) represents its infinitely small element. And thus
it must be found that the optimal functions I'y > 0, which are
limited by condition (16).

Derivation of the Basic Formula

" First write the formula for a conditional, Speciﬁc risk, rg,
understanding by this a risk in the s cycle, with a fixed ‘pre-

history’ of the control device inputs, i.e., with fixed values for

> =, o>
% .
Ys"s Ys—1> Us—1-

et e d :
‘cs=M{Ws|ys,us—1»ys—1}
_»* -

=j W[S X5y Xs (sb s)] P (A x|ys5 us— 19ys 1)dR(/‘sxs
R(4s, xs) (17)

Here Z (average, A, x,) is the domain of changes for average
As and x,, and d % (average A, x,) is its infinitely small element;
" P (average A, x,/vector y¥, vector wu,,, vector y,,) is the
conditional, common probability density of the average Js and
x,, with fixed vectors ¥, u,;, y,;. In conformity with a
well-known theorem of the theory of probabilities, an equality
exists:

P(Is,x‘slis*’ 175—11 i;s—l)
—P(Z |.Vs:us l’ys 1) P(x Iys,
=P(Lly

s— 13 ys 1> s)
(18)

The last transposition is accurate, because the probability
density of average.4,, with a fixed vector y¥, will not change if
.vector u,—,, vector y,, are also fixed (see Figure 4) Further,
the probability density. of x, -with a fixed vector y¥, will not
change, if in addition average 2, is fixed. The second multiple
(18) is rewritten in an expanded form:

Vs )'P(x§.IYs: s— 1> ys)

P(X l;s*: _‘s 17;.; 1) .
_SP(xsluwu)P (/LS)F (uslys’ Us- 1, ys 1) d‘%(usa s)

R (us s)

(19)

where .%’ (average s, average ug) is the domain of changes for
average i, and average u,, and P (average u,) is the a posteriori
probability density of average u, in the s cycle:

Ps(ﬁs):P(ﬁslﬁs 1’.)7; 1) .
(20)

_,[P(usl.us l)P(ﬂs 1Iy1—sa s l)d‘%(#s 1)
) : R(ps-1) N
Inasmuch as:
. P(ﬁs~1|}7s la-_)s 1)
—IP(#S 1|)’s 1 Ug- l)d‘%(ub 2) (21)

R(us 2)

where Z (average vector ,uS_Q) is the domain of changes for the
matrix of average vectors (us,—,), therefore, it is necessary to
find the conditional probability density of P (average vector
Hs—, vector ye), for the matrix of average vectors Us—. From
the equality:

- 536/3

P(ﬁs—1aas—1a§sé1)
=P(ﬁs—19)_;s—1|ﬁ;—l)'P(ﬁ;—1) .

) =P(l_7's.—1|ﬁs—1,;s—1)'P(Js—1a;s—'1) (22)
‘is found: :
Ps—l(ﬁsT-I)=P(ﬁs—1[Js—l’;s—l)

=P(1’—[s+lﬂj;s—llﬁs—l)P(ﬁs—l) (23)

P_(as—ls J_;s—l)

Here P (vector u,—, vector ys—) is the common a priori
probability density of vectors us, ys-; P (average vector ;)
is the a priori probability density of the matrix of average
vectors u,Z;, and P (vector u;—, vector y,/average vector
Its—) is the conditional probability density of vectors us—, Ys—1,
with a fixed matrix of average vectors ,us_i (the probability -
function). In passing (s — 1) times around the closed logs
in Figure 4, it is possible, as in the denvatlons’ 9 to find the
expression:

s—1 ‘ s—1
Po(po) l;IIP(ﬁ.-Iﬁi_l) [EIOP (yil.ubisui)] l:l;[ori]
P(l—is 1;;5 1) (24)

The substitution of (24) in (21), and further-on, of (21) in (20),
(20) in (19) and (19) in (18) will make it possible to determine
the second co-factor in (18). Now consider the first co-factor

Ps—l(ﬁ;—l)=

" of this expression—the a posteriori probability density Tt

P,(1)=P(L|ySy
= [ P(L)7)dRT-1) (25
R—):(s—l)
Inasmuch as:
 PUH=PR) PGHL)=PLIN PG
therefore: Co
- .S = POOHLY . ‘
P,(1)=P5H=p (1) 2215 26)
: P(ys)

The a. priori prébability density of the matrix for average
vectors A, is determinéd from the formula that is accurate for
the Markov process:

P(Is)zp(zmzla'“azs)

= Po(To)- P (A4170) P(TalAy) ... PR, )

=Py (1) ﬁ P(&lAi-y)

@7
i=1
Further, the conditional probability density is:
P 1A) =P (yolao) P(30) ... P(y¥12)
=1 POII) S (@8)
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Consequently, from 26), 27 énd (28), is obtained:

., Po(lo) HIP(/LIZ, 0 H P(yi1%)
P s (’{s)_ — (29)
P(H _
" By substituting (29) in (25), the final formula for P,
(average A,) is found. . ’

Attention is now turned to the principal difference between
formula (24) and (29) for the a posteriori probability densities
of the average vectors u,—; and°,. The storage. of informa-
tion regarding the disturbance z or the vector average u,, i.c.,
essentially, regarding the unexpected manner involving the
changing characteristics of the plant, is expressed in the fact
the a priori probability density P, (average 4y) is replaced in
each new cycle by the a posteriori densities P, (average uy)
[see (20), associated with the expression (23)]. From (23) and
(20) it is evident that the function P, (average u,), and, con-
sequently, also the rate of information storage depends on
all the preceding strategies I; (i < 5). In other words, the rate
involved in studying the plant depends on how efficiently the
experiments were set up with respect to studying this plant,
feeding it with the u; actions and making analysis of the plant
y; reactions to these actions. By the way in'formula (23) for P,

(average vector u,), which is associated with (29), a dependence .

on the part of the information storage rate, with regard to the
vector average A, as agamst the strategies I;, does not exist,
i.e., the information storage process is a passive or indepen-
dent one.

By carrying out all the substitutions indicated above and
then substituting (18) in (17), a final formula may be
arrived at for the conditional, specific risk r,. If the values of r,,
are considered in different experiments carried out with this
system, then the vectors y*;, u,, and y,—,, which, generally

‘speaking, are not known beforehand, may assume different -

values. Let P (vector yg*, vector us, vector y;—,) be the density
of the common distribution of these vectors; in such a case:

P(ys: Us- l’ys 1) P(us 1> ys 1) P(ys lys 17 5= 1) (30)
_P(us lays 1) P(y.s)

T he last transposition is accurate, 1nasmuch as vector y.* does’

not depend on vector y,, and vector u,.,. In that case, the
specific risk 7;, which represents the average value of r,, where
experiments have -been conducted on a large scale, is deter-
mined by the formula:

%Y:M{rS}zjrsp()_;\s*ﬁ _; l!ys—l)(i‘%(;s*a ;s—la j;s—l) (3])

O
R(ys, “s 1s ,Vs 1)

e el

_IV P(us l’ys 1)P( )d’@(ysa s l’;s—i)

R(ys us 1,ys 1)

Having substituted here the expression for r,, the following
formula is arrived at:

A=W, [5,x7 (5, 1) X1 Po (Zo)- HP(Z 1= ) (32)

> =2 > >
R (s, ttss X5, V5, tts, ys— 1)

: 1_1) Py

s—1

)Po(uo) HP(# i~ 1) H P(y gy 1, ;)

K
H Tid‘%(zsz ﬁ: Xss ys*> Ugs ys—l)
i=0 C

~ It is important to note that, although in the given case,
object B has no memory, nevertheless risk R,, in an s. cycle,
depends on all the I strategies at the time moments ¢ = 0, 1,

.,s. The physical reason for this phenomenon, which is absent
in a closed loop system, is found precisely in the duality of
control. Control at a k¥ moment of time should be calculated
not only with a view towards decreasing the specific risk Ry,
which corresponds to. this moment of time, but also towards
promoting a risk reduction, R; (i > k), during the following
moments of time, by means of a better study of the plant.

Determination of the Optimum Strategy

In determining the optimum strategy®: °® our thoughts are
drawn towards -dynamic programming!. Therefore introduce:
some auxiliary functions o, (0 < k& < n): )

—x - -
o0=0 (V> Upo U — 1, V- 1)

_f Wi [k xk (k Zk)xk] Po(zo) H P |Z;—1)

R (hzes e %10 . )
k k . .
’ HP(J’?:'L)'PO (o) TT P(@di= ) (33)
i=0 i=1 :
Also, let
k~1

1—.[ P(yi]ﬁia i‘} ui) d‘@ (Z—k’ ﬁk;xk)
= . (k=0,1,...,r) (34

In that case, the formula for the risk R, which corresponds
to the moment of time ¢ = n, will assume the form:

—x =

Rn=j.an(yr9ur’un—lsyn—1) ﬂn—l'rrdR(yn: yn 1) (35)

> > >
R (yn*, tn, yn-1)

jﬂn—l%r(yr’ n—l’yn I)d'@(yns n-l’yn—l)
’ R(y'l*;: Iyn 0

where:

7r(;n*: _>n 1syn-l)
—ja (yns 9un—-19yn— )F (ynaumun—l’yn l)d'%(un) (36)

R (un)
On the basis of the theorem regardmg average value, taking
(16) into consideration the following can be written:

_(O‘n)(pj F d‘% (un) (O(")(PZ(OC )mm (37)
R ("n)

Assume that all I, (i < n) are given and that the control
process fight down to the moment -+ = n, has been realized.
The selection of I',, must be in such a way as to minimize R,.
This may be accomplished if, for any arbitrary vectors y,*, u,—,
V-1, I'n is selected in such a manner as to have function y,
minimal. Lety, equal e, and u, * be the value u,, that minimizes «,,.

- (38)
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- - -
Evidently, u,* is the function of vectors y,*, u,— and y,—;:
* % Ok = -
u, =u, (yinun—l’yn-—l) (39)

In that case, the optimum strategy ['.* 1s gwen by the
expression:

¥ =6 (u,—uf) (40)

where 0 is the unit impulse function. This denotes that I, is the

regular strategy, and not thé random one, in which case the

optimal value u,, = u,*. From (39) it is evident tha the optimal
value depends on the values previously observed by the control
device A: ug, y,(s = 0,111,n — 1),and alsoon: y;* (i =0,..., n).

It is very simple to prove the accuracy of expression (40).
By substituting it in formula (35), one obtains, by virtue of the
known property of the ¢ function .

Xr= min ¢, (un’ yr P n—l: yn 1) (an)mm (41)
un €2 (un)

But, according to (34), this is actually the lowest pos51b1e
value for y,. Consequently, I, * repreSents the optimum strategy.

In order to find the optimum strategies I',*, where i < n,
one must shift gradually from the terminal momentiz = n to
the beginning—see references 8 and 9.

As a result, the rule stated below is arrived at for the deter-
mination,of the optlmum strategy I, *_,. Introduce the function:

Vn—k="Vn- k(yn s U — o= 1ayn k- 1) "Xk (42)

+j)’n k+1(un k+13yn —k+1> Uy— k:yn W 4 (y, - kayn k+1)
R (yn—us n*-k+1)

The magnitude y,* = «,*, according to (38). Now find the
value that minimizes the function y,, —, in which case:

)’:—k— min 7y, _;=7,- k(“n ) ‘(43)
Un-k eR (n—i) .
-Evidently,
* et -
un—k:un—k(yn—k’un—k-—lr-yn—k—1) (44)
In that case, the optimum strategy is: '
F* =0 (Uy_y— :xk—'k) (45)

i.e., the optimum stgategy is regular and consists of the selection:
Up—y, = U, *—y. From (44) it is evident that u,*—, depends on the

values of u; and y,, which had been observed by the control

device during the preceding moments, where i < n — k, and
also y;* (j < n — k). Consequently, algorithm (44) is realized
physically.’

In the partial case, when the average 4, process is converted
to.a random value of average A, and average y; to a random
value of average u, formula (33) for «, is simplified and assumes
the form:

ak—l_!(VVk [k, Xk (k 2, x ] Po (D) H P(y{|7):

'PO (ﬁ) H P(J’.lﬁ, iaui) dﬂ (Z> ﬁ: xk)

i=0

If x,* are given m advance then the formula proves to be still

(46)
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Examples

Consider three examples that illustrate the above theory.
Figure 5, shows a representation of the simplest system for
which Ay, =0, u is: the random magnitude and the equation

. has the form:

 Ug=ugtyg :
ye=af+h7 (48)

XS Am U g
Let the r and om magnitudes y, g, and h* have normal

distribution rules, with 0 average values and 0,2 0,2 and 2
dispersions, respectively. Further, 4, and o; are known magni-

tudes, in which case, _
} (49)

(50)

(A=A
207

1
xF=A=const; P(})= _exp{—
v 0,4/27

Let: L
VVs= VVs(Sn Xss x:‘)=(xs_x::)=(xs_'1)2

. As a result of basing the solution on the method described
above (see reference 9) and with the application of formula (46),
the optimal control rule in the following form is found:

2o i ) Z (xi—i‘i)

u¥= + T (51)

1+< >(s+1) (6 >2+(s+1) - (?)2

The explain the meaning of this formula, if interferences g,
and /,* were absent, then, for the purpose of obtaining an ideal
value, x; = x;* = 4, that would assure the magnitude W, = 0,
it would be necessary to establish the value of u; = u* — u
= A — u. In formula (51), the first two components yield an
evaluation for 1 on the basis of the observed y,* values. The
final term yields an evaluation for x on the basis of the observed
differences (x; — ;). It is evident from Figure 5, in fact, that
x; — u; = u + y;. Consequently, a neutralization of the differ-
ences (x; — u,) yields an evaluation for the magnitude x. With
sufficiently high values for s, the final term of expression (51)
is approximately equal to the arlthmetlc mean of the values
(x‘L - uz)

Consider another example pertaining to the same circuit in
Figure 5. Let hy* = 0, while u is replaced by u, and represents

‘a gaussian, discrete, Markov random process; in such case,

P (Mo)—

2
_Ho_
*’{ 263}

)2
_exp {_(#k 2I;k2 1) }
oo\/Zn 1

"The magnitudes g; and W are the same as in the preceding
example, and x,* = x* is a known constant. In that case (see

0\/7t

'P (il - 1) =

(52)

.reference 10) the optimal control rule has the form:

simpler: k=1
k—1 U:=X*—~Z e (O —uy) (53)
= W (k,x) Po () T POuR, 1) AR (. x)  (47) | =0
R (&2, xi) The second component of formula (53) represents an
These formulae had been previously brought out? 9, " evaluation for the magnitude us. The values of the weighting
536/5
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céeﬂicients, Liks which are computed from comparatively"

complex formulae that are not set forth here, possess the property :

L &
le k .

The physical significance of this property in the optimum
strategy (53) consists in that a lesser weight is imparted to
information of older origin, inasmuch as it ‘becomes obsolete’.
Thus, there takes place, in control device A, not only a process
of storing new information, but also a process of degradmg
obsolete information.

For the established process, where k tends to infinity in
formula (53), the /;,; coefficients ‘diminish in accordance with
the law of geometric progression as the value » = k& — i increases,
i.e., as the previously measured difference (x; — u;) is withdrawn
from the current moment of time.. It is not difficult to realize

(54)

. such an algorithm by means of the simplest circuit.

The examples given above are degenerate, since they are
equivalent to examples in which the value of the unknown
parameter u is measured with a certain amount of error. The
above theory, however, by means of a uniform method, makes
it possible to examine even more complicated problems. Con-
sider the system that is represented.in Figure 6. The equations
for this system have the form

xs"'hs_(us_—*'lf) ) ys=xs+hs (55)

The magnitudes g, and h* = 0. Noise %, has a normal

distribution with a zero average.value and a o, 2 dispersion.

The magmtude xg* is absent (for example, it may be assumed
that x.* = 0). All the values of W, = 0 with the exceptlon of
the last one:

W, =x, (56

_ Assume that p is a random magnitude with a .probability
dens1ty of Py (u), in which case || < 1. In the same manner,
it may also he assumed that |u| < 1. The problem consists in
determining the optimum algorithm for the control device 4
that would satisfy the condition:

R=M{W)}=M {x,}‘=min | (57)

~ The solution of this problem produces the optimal method '

for finding the minimum of the parabolic function x = (v + )2,

_where u is unknown, and x is measured with an /4 error. At first,

wherei'=0, 1, ..., n — 1, tentative values for u, are established,

and the corresponding magnitudes y; are measured. Following

this, where i = n, such a u,, is established as to give a minimal

mathematical anticipation to the Xn value that corresponds to it.
For the given problem

. 1 1.
P(yilp, i,u;)=———exp {—2‘;7 [y,-—uiz——Zuiu—pZ]Z}

ar\/Zn

= 1_’_exp {a;+ bju+cp®+dy’ +u*} - (58)

0',,\/27t

where: >
. 1 - ] ’Vn—1=j ’y:‘dyn—1=cxp{An—Z}'®n(En—25Fn—23un—1)
a;= _2_07(%—“;'2)2; bj=-=2 “i(uiz—yi)? T ; (63)
. r o r (59) and, if one assumes that: ‘
2w, A :

o= Gui—y);  di= =y X,= min O, (66)

g, S g, tp-1€ R (n-1) l

536/6 ' - N

‘

All &, = 0, with the exception of &,,, for which, in conformity
with (47) it is found that (integration for x,, is replaced by the

* substitution x,, = (u, + w)*:

_| 2p ¢ 1
o= f_(lur +u) “Po(p) N

n—-1 . 60
P { 2, (ai+bp+t el +dys’ + ﬂ4)} du ( ).

i=0

By making use of this expression, it is possible to findy; and
the values for u;*, which, in minimizing y;, prove to be optimal.
This is accomplished by means of a succession of alternating
mlmmlzatlons and integrations, in the course of ‘which, it is
necessary to memorize the functions of three variables that are
called, as is known (see, for example reference 11) sufficient
coordinates, but the functions of three variables are too complex.
For this reason, in the given case, the sufficient coordinates
prove to be, figuratively speaking, insufficient for a convenient
solution. Howevér, the solution may be considerably simplified.
As was indicated by calculations, by means of expansion into
a Pike and Silverberg series', it is possible to assume, w1th a
sufficient degree of accuracy:

b+’ +dy’ +pt = )
= ¢ i u) f1 (#)'*‘Qz pu) (W) (61)

where 01, [1, Pa, fo are some functions. In that case,

2= {(u, +1)* Po (1) exp
n—1 E .
{An—i + '=Zo Loy ou) f1(W+o,lysu) fo (ﬂ)]} du

- 1
=exp {An-l}j_(ft,,+u)2Po(u)

~

-
II

o

Z(yn 1) Ps 1+q72(ys, 3)

exp {E,fi (W +F,-1 /2 (W)} dp ' (62)
where '
As=’ Z ai=As—1+as
i=0 |
Es= Z (yp 1) b -1+ (Pl (ys’ us) (63)
i=0
=L

For this reason,

ye=ar= min d,=exp{d, 1} O, (E,-1,F,-1) (64)

un € 2 (un)

where @, * is the function of two variables.

Further,
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y,’f,1=exp {Anf-l}'e:tk—l(En—bFn—Z) » (67)
(k=0,1,...,n) '
In a similar way, one obtains (k = 0, 1,...,mn): ‘
’Yr’lk—k=‘exp {-An—k}'G;k—k(En—ka Fn—k) (68)

where

Gf k(En k’ n— k)_ mln ®n k(En k9 n—ks Un— k) (69)
tn i€ 2 (tn-x)

And so it is seen' that it is only necessary to memorize the
0,,* — k functions of two variables, which can be accomplished
without any considerable difficulties. In minimization, it is
sufficient to verify the extreme values of u,—, = +.1. '

Conclusion

The dual control theory may be extended in various direc-
tions. Thus, for example, its extension to purely discrete systems
merits attention, in which each of the magnitudes can assume
only one of the permissible levels.

The development of this theory makes it possible to clarify

the principles involved in the optimal teachmg of discrete -

automatic machines.

The theory described above pertains_to. the- ‘Beiesov’ type,
inasmuch as the assumption is made in it, that the a priori
probability characteristics are known. However, the formulation
of the dual control theory is likewise expedient for those cases
where these characteristics are unknown. Such a formulation

may be carried out either on the basis of the minimax principle .

or by the application of the idea of inductive probability.

B
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‘At the present time, the most important problem for the
immediate future is the development of approximate solution
methods for dull control theory problems, the formulation of
sub-optimal strategies, the determination of the numerical value
of risk in practically optimal systems.and its comparison with
the value of risk in existing systems. Such a comparison will
make it possible to clarify the extent of the gain that may be
anticipated where we have a maximum degree of perfection
in existing Systems.
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Fundamé;ntals of the Theory
of Non-linear Pulse Control Systems

Ya. Z. TSYPKIN

Introduction

" The theory of linear pulse control systems has attained a high

level of development and the main problems in the analysis and
synthesis of such systems can be solved. However, with regard
to non-linear pulse control systems, the theory is still in its
initial stage. Up to the present time non-linear theory has been
confined mostly to the investigation of periodic conditions.
Yet periodic conditions are not operational conditions and the
important problem-still remains to ensure the stability of non-
linear pulse control systems and to assess the ‘quality’ of stable
processes. Attempts to employ the methods of investigating

periodic conditions for estimating stability when the required .

periodic conditions are no longer present are often unjustified
since the absence of a particular type of periodic condition is
no guarantee that other forms of periodic or almost-periodic
conditions are not present. .

For solution of the stability problem it was quite natural
to try to employ the ideas of Liapunov’s second method which
is widely used in the theory of continuous systems, in extend-
ing them to difference equations!-®. -

However, such an approach involves difficulties associated
with the need to transform the equations of non-linear pulse
systeme into their normal form, the arbitrariness of the selec-
tion of Liapunov functions and the impossibility of establishing
any general properties of non-linear pulse control systems.

The approach to the problem in this paper is based on an
idea which Popov® 7 used in the investigation of non-linear
continuous control systems. The distinctive feature of this
approach is that it is closely associated with such physical

-concepts as the frequency and, transient responses, and it pro-

vides the widest sufficient conditions of stability which can be
obtained by all the Liapunov functions of the quadratic type.
This approach greatly simplifies an assessment of the quality
of processes in non-lin€éar pulses control systems. It is possible
to establish when the absence of periodic solutions ggarantees
stability and, finally, use may be made of method§s similar

_ to those employed in the investigation of linear pulse systems.

Statement of the Problem

A block diagram of a non-linear pulse control system is
shown in Figure 1. It consists of a non-linear element in
series with a linear pulse part LP which is an open linear
pulse loop. The linear pulse part incorporates a pulse element
for amplitide modulation of arbitrarily shaped pulses and
a continuous part.

Letus suppose that the characteristic @ (x) of the non-linear
element satisfies the following conditions (Figure 2):

(a) ®(0)=0
(®) 0<2¥ep, &
(c) ' | lim ®(x)+0 .'

which correspond to the fact that this characteristic belongs to
the interval (0, k¢). -

The main problem is to determine the stability of the systems
which are to be considered for any initial deviations and to .
determine the quality of behaviour in stable systems. Stability
of this kind which is independent of the particular shape of the
characteristic of the non-linear element and which satisfies the
general conditions (1), is called generally absolute stability®.

Equations of Non-linear Pulse control Systéms

Let one suppose that the continuous part of the linear pulse
part LP receives perturbations in the form of initial conditions
with n == 0. One puts f[r] for the response of this continuous part
to partial conditions and applies it to the input of the non-linear
pulse system (Figure I). If the continuous part, and therefore
the linear pulse part, is stable, then

lim f[n]=0 2
n—o
The equation of the pulse control system with respct to the
error x [n] can take either of two forms.

(i) With respect to original lattice functions:

x[n)=f[n]= 3 win-m]O@GImD @)
(i) With respect to their transforms:
X*()=F*(@)—-W*(9) D{®(x[n])} C))
Here® - - _
Z*(9)=D{z[n]}= ;06""”2['1] ()

is the discrete Laplace transform (D transformation): ¢ = ¢ +/@®
is a parameter of transformation; @ = w7 is the relative
frequency: T is the repetition interval®;

Wr@=Dw[n]} ©

is the transfer function of the linear pulse part;
wln]=w(), t=n 7 @)

is the impulse characteristic of “the linear pulse part; x[n], f[r]
are the lattice functions, which correspond to the error and the
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reduced input: X*(g), F*(g) are their transforms and, finally,
D (x) is the characteristic of the non-linear element.

For a stable linear pulse part '

lim w[n]=0

n—o

®

This implies that the corresponding transfer function W*(q)
has no poles in the right-hand half-band Reg >0, —n< Img<m.

The Sufficient Condition of Absolute Stability

. A pulse control system is absolutely stable relative to any
perturbation f [#] which satisfies the condition (2) if

lim x[n]=0

n—w

®

In order to establish the fact of absolute stability, one estimates
the solutions x [n] of the equation with respect to the orlgmal
functions.

By analogy with the ideas of Popov® 7; the auxiliary func-
tions are now introduced

O(x[n]) -0<n<N
~oxlnl= { n<0,n>N (10)
and :
‘PN [n]=xy[n]-= ‘PN [n] ayn |
where '
Xy [n] f [n]— Z wln—m]ey[m] (12)
It is obvious that for 0 <n < N
xy[n]=x[n]
where x [n] is the solution of eqn (3).
Now the following expression is formed
PN= Zo on[nlyn[n] (13)
‘ which, having regard to (10) and (11), is equal to.
| .
pn= Z <¢’ (x[n]x[n] ——-<D2 (x [n])> (14

According to the Liapunov-Parseval equahty eqn (13) can also
be represented as

pN=§,—J; O} (— j@) ¥ (j) da (1s)

where C . ,
O3 (j@)=D {oy[nl}4=75 -
and by virtue of (11) and (12) . '

Un(j@)=D Y [1]}g= 5= Firm— <W*(jw> +§> @} (ja)

(16)

an-

These spectral- functions ex1st if conditions (10) and (8) are
fulfilled.
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Substituting (16) and (17) into (15) and after simple trans-
formations one gets
i F*(jm) |?
PN=§“‘
n -

IReTI* (ja)| 97

JReTT* () 3 (j) —

1 (" F*(jo) ,_
+_8_7tj‘_7: ReIT*(jw) @ (18)
where 1
A ReH*(j(T))v=Re w* (j6)+f>0 19)

The function
- ., 1
I (j@)=W* (j@) + 4

which plays the main role, is called the analogue of the Popov
function. .

Since the first integral in (18) is negatlve by dlscardmg it,
one obtains the inequality

oL [* PG
N_Sn -z ReIl* (jw) .
By virtue of (19) the quantity c is positive: it is independent of N.

Substituting into the left-hand 51de of (20) the value of gn
from (14) one obtams

. eI .

According to the condition (1a), the sum on the left-hand side
of (21) is positive, moreover it is limited. The series which is
formed from this sum as N— oo, therefore converges. Using
the known theorem of the convergence of series with positive

ds=C (20).

1)

_terms, .one concludes that

: - ({ @D\
11_1}:0q)<x[njx[n]<l—m]— —0
Hence, by virtue of the conditions (1), it follows that
lim x[n]=0 ‘ (22)

Thus a pulse control system which has a stable pulse linear
part and a non-linear characteristic @ (x) and which satisfies
the conditions (1), will be absolutely stable if the real part of the
analogue of Popov’s function is positive, i.e. if
1

ReIT* (j@)=Re W*(j5)+f>0 (23)

The condition of stability (23) determines the magnitudé of
the interval (0, k) which includes the non-linear characteristic

@' (x) for which the pulse system is absolutely stable. This
condition is sufficient.

Frequency Criteria of Absolute Stability

To formulate the criteria of stability of a pulse control
system one introduces the concept of a static gam of the non-
linear element

29
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which is the slope of a straight line passing through the point
of the non-linear characteristic for a specified value of x. The
maximum Spyax and the minimum Sg;, static gains are
determined by the rays of a sector which is tangential to the
characteristic (Figure 3). A non-linear pulse control system in
which the non-linear element is replaced by a linear element
with some fixed gain, %, is said to be a linearized pulse control
system. For a linearized pulse system to be stable, by analogy
with the Nyquist criterion’, it is necessary and sufficient that the
frequency characteristic of the linear pulse part LP should

not embrace the ponts — 1/k, jO. It will be said that a linearized-

system is obvtously stable if the frequency characteristic of the
linear pulse part does not intersect the straight line — 1/k.
Then, according to the condition of stability (23), the fre-
quency criterion of absolute stability of a non-linear pulse
control system can be formulated in the following way. A non-
linear pulse control system with its characteristic belonging to
the interval (0, k), will be absolutely stable if the linearized
pulse system corresponding to it is obvtously stable or if the
. frequency characteristic W*(j@) of the linear pulse part does
not intersect the straight line — 1/k (Figure 4).

The greatest value & = k% which determines the span of
the interval (sector) in which the non-linear characteristic is
located, is determined by drawing the vertical tangent to W*(j@®).
The difference & — Syax characterizes the margin of stability.

The stability criterion of a pulse control system can also
be formulated with referenec to the frequency characteristic
K*(j@) of a closed linearized pulse control system. Selecting
k = ky/2; then

ko W* (jw)

7 J
K* (j@)=—"F7——— (25)
L+ W (j@)

According to the usual constructions of the frequency
characteristic of a closed loop from th e frequency characteristic
of an open loop?, for a obvtously stable linearized pulse control
system if Kk = k,/2, one has

K*(j@)l<1 (26)

Thus a non-linear pulse control system with its characteristic
belonging to the interval (0, k,) will be absolutely stable if the fre-
quency characteristic of the closed linearized pulse’control system
K*(&) with gain k,/2 does not exceed unity in absolute value.

One Notes that the frequency criteria are also applicable in
those cases when the continuous part contains delay elements
or elements with distributed constants.

The frequency criteria of absolute stability can also be
expressed in analytic form. The first criterion is closely related
to the problem of Karatsodor, whilst the second criterion is
closely associated with Shur’s problem in the theory of analytic
functions?®.

The analytic form of the criteria is considered in a special
paper. One will not consider it here as, more over, the use of
frequency criteria is the simplest way of elucidating various
general properties of non-linear pulse control systems.

Generalization of the Stability Criteria

Non-linear pulse control system which contain a stable
linear pulse part have been considered above. Now suppose that
the linear pulse part is neutral or unstable. This implies that
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its transfer function W*(g) has poles on the imaginary axis, and
in particular, at the origin or in the right-hand half-band
Reg >0, — n < Imqg < 7% Since the determined sufficient
conditions must hold for any non-linear characteristic which
belongs to the interval (0, k), they must also hold for a linear
characteristic which belongs to this interval. But for sufficiently
small gains z of this linear characteristic, a closed pulse control
system will behave like an open pulse control, system corre-
sponding to the linear pulse part, i.e. it will be neutral or un-
stable. Therefore, for instances of a neutral or unstable linear
pulse part it is necessary to impose additional limitations on
the minimum static gain Syin. Let us elueidate these limita-
tions. Given a proportional feedback with the coefficient z
across the linear pulse part (Figure 6), one supposes that the
structure of thelinear pulse part is such that for a finite z < Smin
the closed linear pulse part is stable. The frequency criteria of
stability are then applicable to this non-linear pulse control
system, but the role of the frequency characteristic of the
linear pulse part W*(j®) will now be played by the frequency

‘characteristic of the closed pulse control system, which is a new

linear pulse part equal to
W™ (j@)

1+zW*(j@)
But the blockdiagram of a non-linear pulse control system
[Figure 6(a)] can easily be converted to the form of Figure 6(b)
where f[n] is now the response of the closed pulse control
system, and the non-linear characteristic is equal to

® (x)+ zx (28)

However, since this characteristic must satisfy the condi-
tions (1),

W (j@)= 27)

z< <k

D (x)
x (29)

i.e. Smin > 2

Thus the formulation of the frequency criterion remains unchan-
ged. Only the characteristic of the non-linear element must now
belong to the sector (z, k), and the frequency characteristic
of the linear pulse part,WZ‘ (j@) is determined by the expression

@.

One Notes that if the linear pulse part is neutral and its
transfer function W*(q) has only one zero pole, whilst the rest
of the poles have negative real parts, then z in eqn (27) can be
arbitrarily small and for this case one has '

Wi (jo)=W* (j@) (30)
i.e. in this case there is no need to construct W ¥(jid) from
W*(jé@) on the basis of the relation (27). .

If the non-linear characteristic @ (x) at x > x° goes outside
the limits of the sector (z, k), which is usually the case for
non-linear characteristics of the saturation type, the frequency
criterion of stability guarantees stability with deviations of the
error not exceeding x°.

The frequency criteria of stability also hold for those cases
when the non-linear characteristic (or gain of the linear pulse
part) is a function of time #, if © (x, #) for any n > n, satisfies
the conditions (1), i.e. if it belongs to the sector (0, k,) or in
the case of a neutral or unstable linear pulse part belongs to )
the interval (z, k).
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The Necessary and Sufficient Conditions of Absolute Stability for
Some Non-linear Control Systems

Frequency criteria of absolute stability determine the
sufficient conditions of absolute stability. It is obvious that in
those cases when these sufficient conditions of absolute stability
coincide with the necessary and sufficient condition of stability
of linearized pulse control systems, they also become necessary
conditions of absolute stability. Let us define the class of non-
linear pulse control systems for which the conditions of absolute
stability are necessary and sufficient. This problem was first posed
by Aizerman!?, for continuous control systems, and slightly later
by Letov®. The solution of this problem is of importance since
it permits reduction of the investigation of the absolute stability
of non-linear pulse control systems to the well-known investiga-
tion of the stability of linear pulse control systems.

It follows directly from the formulation of the frequency
criterion that this class of non-linear pulse control systems
includes those for which the obvtous stability of linearized pulse
control systems coincides with their stability. The frequency

. characteristics of these latter pulse control systems W*(j@) [or

W ¥(j®)] must have the form shown in Figure 7(a) and (b).
The frequency criterion of absolute stability determines the
necessary and sufficient conditions for all non-linear pulse con-
trol systems of the first order (with amplitude- or pulse width-
ortime-modulation), and also for non-linear pulse control systems
of any order whose frequency characteristic W*(j@) has the
largest real part in absolute value at the boundary frequency.
It is worthwhile pointing out that for this class of system the
absence of periodic conditions according to the improved
method of harmonic balance'?, testifies to their stability. For
digital automatic systems, as shown elsewhere!®, the deter-
mination of periodic conditions with, a relative frequency® = 7
entails drawing a straight line with a slope — 1/W*(j®) in the
plane of the non-linear characteristic (Figure 7)*. If the maximum
real part W*(j@®) in absolute magnitude is attained for @ = 7w
(which always occurs for firstorder pulse control systems), the
condition requiring the absence of aperiodic conditions with
a relative frequency @ = = coincides with the condition of
absolute stability.

Estimation of the Degree of Stability

For the simplest estimate of the quality of the behaviour
of a non-linear puise control system, onewill use the concept
of degrees of stability which characterizes the process damping
speed.

For this purpose, instead of the auxiliary functions (10) and
(11), the following functions are introduced.

-
and
Yy [n]=xy[n]e™~ (32)

‘/’N [”] eén

where ¢ > 0 is some constant quantity.
Multiplying both sides of (12) by e"" there is obtained

n
fnle"=Y wln—m]& " ™ yy[m]e™ (33)
* The author points out that in a previous paper'? he has given an
erroneous slope.

xy[n]e”=

Remarking that according to the shift theorem®
D{z[n]e™},-j5=2%(—5+ jo) (34

and following the same discussion as in the establishment of the
condition of absolute stability, the conclusion is reached that

lim x[n]e’=0 (35)

if the real part of the analogue of the shifted function of
Popov is positive, i.e. if
_ 1
ReIT* (-6 + jw)=Re W*(—6+1w)+7€—>0 (36)
As will be seen from eqn (35), the rate of damping is deter- '
mined here by the quantity 6. The determination of the condi-
tions for which non-linear pulse control systems have a specified
degree of stability, d,, thus entails the use of the frequency
criterion of stability and its application to the shifted frequency
characteristic
W* (=60 + j®) (37)
or
W*(—64+ j©)
1+zW*(—0y+ j©)

for a fixed value d, (Figure 9).

Since the poles of the transfer function W*(— ¢ + g) depend
on ¢ and with increase of ¢ are shifted in the direction of the
right-hand half-band, the greated value of § = dp,,x is attained
for a value

WX (=6+ j@)= (38)

Zo<S

min (39)
which still ensures stability of a closed linear pulse part. Thus
the increase of ¢ is possible until the poles W*(— ¢ + g) are
located at the origin or on the imaginary axis. With an increase
of  the quantity k° usually decreases, whilst z increases. There-
fore, the less the difference Spyax — Smin, the more attainable is
a large degree of stability. This estimate is also applicable to
non-linear pulse control systems in which he characteristic of
the non-linear element depends also on time.

" The Overall Quadratic Estimate

Another important estimate of the quality of behaviour is the
overall quadratic estimate of the output of a non-linear element
[+ o]
2
I,=Y ®*(x[n]) (40)
n=0
To determine the upper boundary of this estimate, one will

avail one-self of Popov’s ideas'. Consider the inequality (21) for
N = oo, representing it in the form

2 x [n] 1
Since
X S 1
.the inequality (41) can be strengthened and
1 1\ & .,
< S~ k—) ,,Z‘o @ (x [n]) <C (42)
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Taking into account the notation of (40) vand (20), from (42)

one gets kS { . |F*( )|2
max . ]w -
Iz'k Smax8nJ ReH*(]w)d (43)
where
' 1 1
ReI1*(jw)=Re W* (]w)+ k“ I —>0 (44)

Replacing Re H*(]w) in eqn (43) by its maximum value, one
finally gets

Kok? S pax 1
LS S e 87
(k Smax (kO'—k) 87

The right-hand side of inequality (44) contains an undetermined
parameter k; here (Figure 3)

f [F*(j@I*da  (45)

Simax (46)

This is so selected that the coefficient is minimum for the inte-
gral (45). It can be shown without difficulty that in this case

<k<k,

kO max g
k= 2 kO max (47)
and therefore finally get
kO max 1- *
I,< —(——‘m 7 Jv \F (Jw)l do (48)
But according to the Llapunov-Parseval9 equality,
1 T . _ 0
| =5 @
- n=0
Therefore eqn (48) can also be represented as
k2 S?
I, < - Y0 ~max
2 _(k _Smax) z f ,[n] (SO)

1t follows from (50) that the upper boundary of the overall qua-
dratic estimate is determined by the sum of the squares of the
discrete responses of the linear impulse part to the applied
inputs. If the linear impulse part receives an input f; [#] which
decreases with time, then

fial= Y win—m)f;[m]
and this implies that

F* (jw)=D{f ["]}q=ja='9 {W* (‘I)FT(Q)}FJE
The computation of the right-hand sides of (48) or (50) is carried
out analytically or graphically by known rules?. The upper
boundary of the overall quadratic error is less, other things
being equal, the greater the margin of stability Ay — Spax. This
estimate is also applicable when the characteristic of a non-
linear element depends also on time.

Conclusion

This approach to the problem makes it comparatively simple
by the concepts of the linear theory of pulse systems to determine
the region of absolute stability of non-linear pulse control systems
and to estimate indices of the quality of processes (the degree of
stability and the overall quadratic estimate). The fact that the
stability and estimates of indices of process quality are indepen-
dent of the actual shape of the characteristic of the non-linear
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element, provided only that this characteristic belongs to the
specified sector, makes it possible to ensure values of estimates
of the indices of quality for variation of the characteristic of the
non-linear element or of the parameters of the linear pulse part
which also lead to a change in the boundaries of the sector (z, k).
In some cases it is therefore no longer necessary to use special -
additional self-adjusting circuits which .complicate non-linear
pulse control systems.

In this connexion it is extremely important to determine the
structure of non-linear pulse control systems, the sensitivity®
of which is low in relation to variations of the non-linear
characteristic and to the parameters of the linear part. For
this purpose use may be made of the results of investigations
into the sensitivity of linear pulse control systems.

Generalization of the method of investigating non-linear
pulse control systems to pulse control systems which contain
a linear pulse part with time-variable parameters, and several
non-linear elements, widens the range of problems which can be
solved and, in particular, makes it possible to investigate non-
linear pulse control systems in wich pulse-width, pulse-phase
and pulse-frequency modulation is provided.
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Synthesis of Optimum Sampled-data Systems
L.N. VOLGIN

Introduction

The transition to the scientific design of compound automatic
complexes and the resulting increase in the calculation difficulties
demand the finding of new ways for the formalization of solu-
tions and simplification of calculation. The creation of the
methods of linear, non-linear and dynamic programming
should be regarded. as considerable achievements in this field.
The method of polynomial equations used below, the efficiency
of which was demonstrated on a number of problems of auto-
matic control, may be added to this number of methods. The
polynomial equations consist of a variety of diophant equations,
the specific methods of solution of which are easily programmed
for digital computers. The development of the operator method
of analysis for the linear pulse systems, of the discrete Laplace
transformation, or z-transformation (see Tsypkin!, Gurevich?,
Zadeh and Ragazzini®, and others), and the emergence of a
large number of ‘different methods for the synthesis of the
optimum linear pulse systems (the works of Tsypkin®-$, Bergen
and Ragazzini’, Chang®-1%, Juryll, Bertram!?, Potapov®?,

- Krasovskii'%, Perov'®, and others) were the reason for the
creation of the method of polynomial equations.

At present the theory of optimum pulse systems for the
control of linear plants lies at the foundation of design of self-
optimizing systems, which contain digital computers. In these

. Systems the automatic linearization of equations for the plant

during the operation of the system is achieved on the basis of
principles described in the works of Kalmanls, Bigelow, and
Ruge!?, and others. Thus, the theory of optimum linear pulse
systems develops into the theory of an extensive class of self-
" optimizing pulse systems of control, adaptable to the changing
characteristics of the controlled plant and to the parameters
of external signals. ’

The basic difficulties which arise in the design of the systems
containing an optimizing model for the medium are associated
with the violation of the conditions of ‘approximation’ of
simulation, which require a continuous relationship between the
quality of control and the change in the parameters of the plant

being simulated. Some of the above-mentioned authors touch’

upon the questions of control for the plants with negative
dynamic properties, during the compensation of which the
violation of ‘approximation’ is possible. The criteria of approxi-
mation found under these conditions, which do not allow the
contraction ‘of the zero and poles of the transfer function
of the plant for the individual structures of automatic sy-
stems, served as the starting point for the search of ana-
Iytical conditions of approximation, suitable for any struc-
tures. The investigation of the conditions of approximation for
automatic systems showed that they are closely connected with
the conditions of stability, and that the distinctive feature of

these conditions is based on the distinctive ideas about the

‘coordina‘te’ and ‘parameter’. The condmons found below,
which combine the conditions of stability and approximation,
are called the efficiency conditions, since the term ‘efficiency’
literally reflects the essence of the considered phenomenon.
From the analytical conditions- of efficiency for different struc-
tures of automatic systems emerge different criteria for efﬁc1ency
On the basis of these criteria it is possible to conclude that the
criteria of stability adopted at present are inadequate for the
synthesis of efficient systems. The attempts to solve the problems
of synthesis for automatic systems often encountered in literature,
inaccurate on the whole or having a very limited field of applica-
tion, are explained by-this. The author has shown!®-20 that the
polynomial equations represent a mathematical tool which is
adequate for the problem of synthesis for efficient automatic
pulse systems. A systematic treatment of the method of poly-
nomial equations is contained in the author’s monograph?0,
In the given paper a derivation of the analytical conditions of
efficiency is given, and a brief survey made of the problems of
automatic control, solvable by means of polynomial equations.

Denotations and Terms Used

1. Symbol z is used for transformétions, where z is the delay
operator for a single cycle.

2. The systems and signals are represented by the rational
real functions of z of the form F = A/B, where 4 and B are
polynomials of z.

3. The factorization of functions F with reference to contour
I'{| Z| = 1} gives the real functions F+ and F~; F — F+F-,
where the sign F* denotes the absence of zeros and poles
of the function in the region D~{| Z| < 1}, and the sign F-
denotes their absence in the region D*{| Z |> 1}.

4. The separation of functions F with respect to contour I’
gives the real functions F = F; + F_, where the sign Fy. denotes
the absence of poles: of the functlon in the region D, and
the sign F_ denotes their absence in the region D*.

5. The representaion (the transfer function) of the controlled
plants will be made by G = P/Q, where P and Q are poly-
nomials of z; the representation (the programme) of the pulse
unit will be made by W = C/D, where C and D are polynomials
of z; the representation of the pulse system as a whole will be .
made by H, and the representations for the input and output
are equal to X and Y respectlvely

Analytical Conditions for the Efficiency of Pulse Systems

By considering the mathematical model of an actual physical
system, one is deliberately making a differentiation between the
‘coordinates’ of the system, the changes in which are reflected
by the given model, and its ‘parameters’ which are determined
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as fixed numbers which, in the given model, form the basis for
calculations. However, the practice of construction of auto-
matic systems shows that the uncontrollable discrepancies
between the calculated and the actual parameters may be the
cause of profound disparity in the calculated and the actual
behaviour of the system. The failure to take this fact into
account will sometimes lead to the construction of inefficient
systems. The majority of automatic systems (the systems of
stabilization and programme control, the computer. and the
reproduction systems, the systems for transmission and process-
ing of data) require a continuous relationship for the behaviour
and the small changes in external conditions, which are expressed
in the change of input coordinates and parameters of the system.
ThHe conditions for which a continuous relationship, between
the coordinates of the system is observed are the conditions of
stability. The conditions for which a continuous relationship
between the behaviour of the system and the deviations of its
parameters from the calculated values, which are assumed to be
constant in a given model, is observed, are the conditions of
approximation of simulation. The general condition of efficiency
for an automatic system, constructed on the basis of a definite
calculated model, which unites the conditions mentioned, may
be formulated as follows. With small variations in the input
coordinates and parameters of the system the variations in the
output coordinates should be small.

Let us find the analytical conditions for the efficiency of
an automatic pulse system, with a single input and a single
output coordinate, described by the following difference
equation: .

g;(xi’xi—la"'sxi—myi:yi—ls"‘:yi-m)‘:O 1)

where F is the continuous function differentiable with respect
to all arguments, i is the discrete time, and n and m are the
corresponding number of stored values x at the input and y at
the output. At the foundation of calculation of the system lies
the linear model, obtainable by means of linearization of
the equation of the system in the vicinity of the current
‘operating point’: .

i (63‘7 >oxi—k+k§0 <3{>Yi—k=0 @)

K=o \Ox;— 0y«
The numbers

0F OF
”’°=(axi_k>o’ b""(@yi_;)o )

which do not depend on index i over the interval of time under
consideration, represent the equivalent parameters of the linear

model. .
Using z-transformation of number sequences®®, the equation

for the linear model (2) may be written in the form:
Y=HX ’ )

where H is the representation of the model, which is the rational
function

H=.i4—,A= Y @z B=Y bz 5)
B k=0 k=0 :

The representation of a real system, the parameters of which
change in relation to time and coordinates, but sometimes also
in an unexpected form, differs from the representation of its

model by the variations 0H, 62H, 6°H, ..., which must satisfy
the general condition for the efficiency of the system. :

By varying the relation (4), the corresponding variations for
the output of the system are obtained:

SY=H-6X+6H X
P2Y=H-?X+26H-6X+6*H X )

The conditions under which the variations in the output coordi-
nate remain small have the form: '

(8Y)_=0; (3*Y)_=0; (8°Y)-=0,... (7

By scparating the right sides of expressions (6) the analytical
conditions for the efficiency of the pulse system are obtained:

H_=0; (0H). =03 (§°H)=0,... (8)

in which case the first of these conditions is the usual condition
of stability, whereas the last are the conditions of ‘approxima-
tion’ of simulation. The necessity for taking into account the
large variations is caused by the fact that as regards the para-
meters of the system its representation is a non-linear function.
Tt is possible to construct an example where the violation of the
efficiency is caused as much as is desired by a high variation®.
However, in practice, mostly violations of the first .two con-
ditions of efficiency are encountered. '

Criteria for the Efficiency of the Basic Structures of the Automatic
Pulse Systems

The method of combining the controlled plants and the

computing units is called the structural system of control. The
simplest pulse systems of automatic control contain a single
computing unit with representation (programme) W and a

single controlled plant with representation G. To each -

structure of the system of control corresponds a-definite func-
tion H, which depends rationally on W and G:

H=H(W,G) )

which is called the representation of the system. For each
structure of control there is a definite class of permissible
functions H, which may be realized in the system by the choice
of different control programmes W, remaining at the same
time within the limits of conditions of efficiency. The structures,
which permit the realization of arbitrary functions H are called

the ideal structures. The structures which do not have even a

single permissible function are called the inefficient structures.
From the point of view of the condition of stability only the
stable functions of type H. are the permissible functions.
However, if it is necessary to realize an unstable function, then
the condition of stability may be discarded by limiting oneself
to the fulfilment of the conditions of approximation. :
By taking into account the variations in. the representation
of the controlled plant, simulated by function G, the condi-
tions of efficiency (8) applied to system-(9) may be written in
the form: '

(oH (PH 5.\ ..
H_f0,<—56— 5G>—0,<—667 5 g)__o,... (10)
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The functions H, 0H/dG, 02H/0G?, ..., derived by differentiation
of (9), depend on W and G. In synthesis of systems for the
automatic control of the programme of the computing unit,
W is chosen in relation to the representation of plant G:

W =W (G) an

The verification of the synthesized systems for efficiency is made

by the substitution of this relationship in the expression (10)
after carrying out the operations of differentiation in-them.

In a general case the pulse systems of automatic control
contain several controlled plants and computing units, which are
connected up into a single structure. These systems may have
several inputt and outputs. The verification of the conditions for
efficiency should be carried out in this case by the variation of
all the output coordinates for the variation in the representations
of all the controlled plant.

The ¢ompensation for the negative dynamic properties of
the controlled plant, by means of the computing unit having
the same negative dynamic properties, is the cause of violation of
the conditions of efficiency of pulse systems of automatic
control. Namely, such a compensation takes place, for example,
during the trivial recalculation of the programme for the com-
puting unit W for a simple closed systern the representation of
which is:

WG

B=1rwe (12)
by the formula:
: 1 H
G 1-H (13) .

by proceeding from the initial function H, which is chosen
without taking into account the conditions of efficiency.

This assumption will be proved. By carrying out the fac-
torization of the representation of the plant it is obtained that:

G=G"G~ (14)
Functions Gt and G-, equal to:
*=P"IQ"; G™=P7/Q" (15)

are the positive and the negative portions of the representation
- of the plant.

The positive plant, which has representation G*, is charac-
terized by the following dynamic properties: stability, instan-
taneousness of reaction, and smoothness of transition process.
The negative plant, which has representation G-, displays
negative dynamic properties: instability, retardation of reaction,
and sudden ejections in transition process.

By modifying formula (12) one obtains:

W s6 eH=— 2" 56 s
azwey? °¢ LWy - 19

First of all, conditions will be found under which the closed
system is ideal, i.e. capable of reproducing the arbitrary func-
tion H. The corresponding programme for the calculating unit
is chosen in accordance with formula (13). By substituting this
formula in (16) one obtains:

°G

5H H{- H)— ®H=—-2H*(1— H)_f,...

540/3
' 5H=H(1—H)<§Pf—_%9);
2
*H=—2H*(1— H)(Q‘Sz” 20P 5Q+2§QQ> . an

The conditions of efficiency (8) require that P~ =0~ = 1.
Thus, the closed system is ideal only in that case when the
plant is positive. In the case of the plant with negative
dynamic properties the function H is not reliazable because of
the violation of the conditions of approximation.

It will be shown that the closed automatic system is efficient
for any controlled plant, under which conditions the class of
permissible functions of this system is equal to

H=P 0F, (18)
where F; is the arbitrary stable rational function of the form:
F_=A/B * 19)

and 0 is the polynomial which satisfies the polynomial equétion
in respect of the unknown polynomials 6 and I7:

AP~ 0+Q II=B" 20)
The corresponding programme of control has the form:
AQ 0
TP+II @

1t will be verified whether the conditions of efﬁciency are
fulfilled. By substituting (21) in (16) and by taking into account
(20) one obtains:

ot AOIL Q3P—P3Q .

“(B*)  pto* ’
5 H = 24%6°T1 Q*6°P—2Q56P5Q +2P5* Q.
(B*)? (PH*Q* ’

‘The conditions of efficiency are fulfilled for any values of G.

In the case of a stable controlied plant the polynomial 0,
as follows from the polynomial eqn (20), becomes arbitrary,

* and the class of permissible functions is extended to

H=P F, (22)
Thus, one proves the criterion for the efficiency of a closed sy-
stem, which requires in addition to the fulfilment of the usual
criterion of stability, that the programme of the computing unit
does not shorten polynomials P~ and Q—*.

Using the analytical conditions of efficiency, it is possible
to derive the criterion of efficiency for any structures of auto-
matic systems. By means of these conditions it is easy to prove,
for example, the following well-known propositions:

(1) The systems on the limit of stability are inefficient.

(2) The open systems of control are efficient only for the
stable plants.

* Applicable to the stable plants the criterion of non-contraction
P~ was, for the first time, introduced in the work of Bergen and
Ragazzini’.
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(3) The ideal structures of control for the plants having
negative dynamic properties do not exist.

(4) The parallel system of control is ideal for stable plants;
the sequential (cascade) system of control is ideal only for
positive plants.

In view of the non-existence of ideal structures of control
for the arbitrary plants, the criterion of efficiency of the auto-
matic system more rigid than the criterion of stability. Only
for the positive plants are the general criteria of stability of the
linear systems adequate.

In order not to violate the conditions of efficiency, .the
optimum function H of the system should be sought for in the
class of permissible functions. The wider the class of per-
missible functions for a given structure, the higher the quality
of the optimum system, remaining conditions being equal.
Therefore, in the synthesis of a system of control for a given
plant, a structure of control having as wide a class of per-
missible functions as possible, a structure close to an ideal one,
should be chosen.

The Use of Polynomial Equations in the Synthesis of Optimum
Pulse Systems

It has been established that the classes of permissible func-
tions for the pulse systems are expressed in terms of polynomial
equations. In the author’s work®-20 it was shown that the
synthesis of optimum pulse systems of control for the linear
plants based on a number of basic criteria may be made entirely
by means of polynomial equations. The finding of the optimum
programme of control is, as a rule, reduced to the solution of
a system of polynomial equations. The computation methods for
the solution of a system of polynomial equations applicable to
the use of digital computers have also been developed and their
advantage over the ordinary methods in the synthesis of con-
trolled programmes for the plants of a high order with complex
correlational relationships was proved. By means of the poly-
nomial equations, a number of new problems of automatic
control, in particular for the unstable controlled plants, was
solved. The basic problems for the synthesis of pulse systems
and their solutions, obtained by the method of polynomial
equations, omitting the proofs because of the lack of space,
are now enumerated. )

The problem of synthesis of the pulse system with the mini-
mum transient period for a given input action:

X=R/S 23)

where R and .S are the polynomials of z, is reduced to the solution
of the following polynomial equation:
P 6+SQ II=R 24

in respect of unknown polynomials § and /7. The corresponding
controlling programme is equal to: "

The minimum duration of the transient process, which ensures
the fulfilment of the conditions of efficiency, from the number o1
cycles, is equal to the sum of powers of polynomials P~ and Q.

With the limitation for the module of the controlling action:

lul<r (i=0,1,2,...) @7)

the corresponding problent is reduced to the finding of a non-
minimum solution of the polynomial equation, which is found
by special computing methods. The modification of the poly-
nomial equation (24) leads to the derivation of a system which
has no pulses.

The problem of synthesis based on the criterion of the
minimum of the total quadratic error:

71—§8—1‘§E@wu*fz e
S0 2nj Jr . z

is reduced to the solution of the system consisting of two
polynomial equations:

P O+Q O=I"P Q"
P O+U*$=I"P Q"

in respect of the unknown polynomials 8, /7 and ¢. The poly-
nomials I and U are the numerator and denominator of func-
tion X (z) X (z7Y). The corresponding controlling programme
is equal to

(29)

%0
P*1II

W:

(30)

The calculation of the quadratic error may also be made by
means of the polynomial equation?.

The problems of synthesis of the optimum pulse systems of
automatic control and of processing of data for the random
input signals, by taking into account the universal nature and
the prevalence of quadratic dispersion criteria, represent the most
favourable field for the application of polynomial equations.
The general problem of synthesis of a pulse system, optimum
according to the criterion of dispersion of the error for finite
time of transition into the unshifted state is reduced to the solu-
tion of a system consisting of three polynomial equations, one
of which secures the efficiency of the synthesized system, the

. second, the finiteness of the settling time and the third, the -

minimization of dispersion of the error. The solution of this
general problem determines the solutions of the numerous
particular problems of extrapolation, filtration, differentiation
and integration of random processes by means of pulse
computing units. The optimization of the pulse systems, by
arbitrary criteria of quality, is reduced to the combination of
the method of polynomial equations and the general methods of
mathematical programming. By means of the theory of poly-
nomial equations it is possible to synthetize the most economic
programmes for the processing of data by the method .of least
squares. The obtained results show that the polynomial equa-
tions represent a suitable mathematical tool for the programming

Q 3] of many procedures of computer mathematics and of mathemat-
=P+ ST (25 jcal statistics, which are widely used in the self-optimizing
: systems of automatic control.
The representation of the transient process has the form: ]
. * Polynomial with the reversed order for the sequence of coeffi-
E=QII (26)  cients is denoted by symbol 4.
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Conclusions

The conditions of efficiency, formulated in this paper, limit
the possibility of change in the dynamic properties of controlled
media by means of pulse computing units. Under these con-
- ditions the worst properties of the plant—instability, retarda-
tion, fluctuation—are shown to be the most difficult to overcome.

The limits of the accuracy of control for the dynamic. ple_mfs by
means of the pulse computing units whilst being wider than for

the units of the continuous type, are, however, not limitless.

Physically, this means that the inertia of the plants cannot be’

. completely overcome. The problem of the theory of automatic
" control lies in the further clarification of the limits of possible
accuracy of control, and the realization of these possibilities
through the design of the most perfect controlling machines. It is
hoped that the future development of polynomial equations
will prove to be one of the 1mportant aids in the solution of
this problem.
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Most Recent Development of Dynamic Programming Techniques
and Their Application to Optimal Systems Design

R.L. STRATONOVICH

Introduction. Block-diagram of an Optimal Controller

As is known'~4, dynamic programming theory solves, in prin-
ciple, a large number of the problems connected with optimal
systems synthesis. The applicability of dynamic programming
methods is not impaired by taking into account white gaussian
noise and other random factors in various components—the
statistical nature of the signal to be reproduced, imprecise
knowledge of it, random influences on the controlled plant, or
interference in the feedback circuit (Figure 1). Of course, as the
" problems grow more complicated, the actual performance of
the calculations becomes more and more difficult.

Although the basic principles of dynamic programming
were expounded long ago, the number of non-trivial problems of
optimal control theory actually solved by this method is not
large. This is explained by purely computational difficulties
which have to be overcome before a solution is found.

What has been said confirms the importance of the develop-
ment of new methods and techniques to increase the effective-
ness of the theory and make it easier for concrete results to be
obtained. :

In complex statistical problems the effective use of the
theory becomes possible as a result of the introduction of
‘sufficient coordinates’ on which the risk function depends.
The importance of this concept was noted by Bellman and
Kalaba2, and the author has clarified and developed it further?: 6.

The sufficient coordinates form the space in which the Bellman
equation is considered. A non-trivial statistical example is used
in this paper to illustrate the effectiveness of the introduction
of sufficient coordinates. In the example, the sufficient coordin-
ates are a combination of a posteriori probabilities and the
dynamic variables of the controlled plant.

In complex statistical problems the introduction of sufficient
coordinates has-the result that the optimal controller breaks
down into at least two consecutive units, each of which is
constructed according to its own principles. The first unit SC

(Figure I) produces the sufficient coordinates X’ In some
dynamic programming problems it is trivial, but in complex
statistical problems it may perhaps prove most important. In
the latter, it is synthetized with the aid of methods similar to
those of non-linear optimal filtration?. In the example considered
below, it simply coincides with a unit effecting optimal non-
linear filtration.

The signals from the SC unit output are sent to a further
unit OC, which produces the optimal control action. The form
of this unit, which converts the sufficient coordinates into a
control signal, is found by consideration of the Bellman
equation. This unit can be synthetized without great difficulty
if the risk function is first found as a solution of the Bellman

equation. The most difficult problem is the obtainment of this
solution. Therefore, techniques and methods, which make it
easier to obtain the solution of this equation, are of interest.

The equation is made far simpler by considering the station-
ary mode of operation, when the time-dependence and time-
derivative are eliminated from the Bellman equation. The corre-
sponding stationary equation was considered by Stratonovich
and Shmalgauzen®, and the method quoted is also described
in this paper. Furthermore, to solve the resultant equation, use
is made of the asymptotic step-by-step approximation method,
first expounded by the author®. This method is convenient for
the case of small diffusion terms, and makes it possible to
obtain consecutive approximations whose accuracy is deter-
mined by the magnitude of the coefficients for the second
derivatives in the Bellman equation.

It must be noted that the number of methods for approximate
solution of the Bellman equation, which can be thought up for
the solution of concrete problems, is practically unlimited; each
method is best suited for the solution of problems of a particular
type. To them must be added the obtaining of a solution on
analogue or digital computers. Out of the whole range of
methods, a special approximate method will be described and
applied to the example under consideration, in the concluding
part of the paper. The essence of this method is that the risk
function is represented as a function whose appearance is fully
determined by a finite number of parameters @, The Bellman
equation for the risk function is replaced by a system of equations
which specify the evolution of these parameters in inverse time.
This system is roughly equivalent to the original Bellman
equation. '

The unit OP (Figure 1) simulates this system of equations
and determines the parameters @ as a function of time. It
operates as a self-contained unit, if measurement of the statistics
of the processes and other variables is not carried out in the
course of operation, and must finish its work before the start '
of operation of the main system. If the operating conditions
change, then there may be a need for periodic plotting of the
process of determination of the parameters by the OP unit in
application to the new operating conditions. Such a system will
belong to the class of adaptive systems. The OC unit produces
the optimal control action in response to the values of the
sufficient coqrdinates and the risk function parameters corres-
ponding to a given moment of time. The corresponding algorithm
is derived from the form of the Bellman equation and the
adopted approximation of the risk function.

Usually the transition to a finite number of parameters entails
some deterioration of the quality of operation of the system. The
greater the number of parameter taken, the higher the accuracy
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of approximation and the closer the system to optimal, but, on
the other hand, the more complicated the OP unit. For a
specified number of parameters is is important to determine the
successful choice of the means of approximation. Here a great

deal depends on the ingenuity and inventiveness of the designer. -

In this paper, one natural means of selecting the parameters is
suggested—taken as the parameters are the bottom coefficients
of the expansion of the risk functlon by a suitable full setof
functions.

The block diagram of an optimal controller given in the paper
is of a basic nature, and in fact not all the units need be there.
In some problems the SC unit can be left out because of triviality.
The OP unit can be separated from the system. It can be
replaced by a preliminary calculation, and the parameter
values can be taken into account once and for all in the syn-
thesis of the OC: unit. The situation is different if the system
itself investigates varying conditions of operation. In that case
to the units OP, SC, OC (f there is no OP unit) must be sent
the signals from the appropriate metering devices.

Example—Sufficient Coordinates—Stationary Fluctuation Regime

Let the variable part of the system—the controlled plant CP
(Figure I)—have a transfer function K (p). Let the control
action u be limited to the values — 1 < # < 1. The input signal
x,, like the output signal y,, is assumed to be known accurately.

Let the signal on the input x; = s, + £, be the sum of the pulse-

signal s; = 4 1 and interference be the normal white noise
&, (ME, = 0; Méi b, = %0 ().

The task of the system is to ensure that the coordinate of
the plant y; reproduces as accurately as possible the pulse
signal s;. If s, = 1, but y, # 1, the penalty ¢ (1, y,) in a unit of
time is taken. The functions ¢ (+ 1, y,) can differ. For the step-
by-step method, which is used to obtain formula (22), the
condition that these functions be differentiable is essential.
Henceforward, to make things specific, use will be made of the
criterion of the minimum mean square error, which corresponds
to the functions

c(s,y)=(s—)’ )

It will be assumed that the signal s; is a priori a symmetrical
two-position Markovian process, moreover the a priori pro-
babilities p; (4 1) = P [s; = + 1] satisfy the equations

d%?)=__dpg:1)=,_#p(1y+up(—1) @

This means that the pulses and intervals are independent
and distributed according to the exponent1a1 law Pt > ¢] =

—uc.

It is required to design an optimal controller which produces
a control signal u; so that the mean penalties are reduced to a
minimum. The latter is a function of the sufficient coordinates.

The sufficient coordinates of the given problem will be
considered. Their definition, which is given by the author® 6
reduces to the requirement of the sufficiency of the selected
coordinates in three respects:

(a) Sufficiency for determination of the condltlonal mean
penalties:

Fe=M [¢|x,u,,t<t] 3)

(b) Sufficiency for indication of the constraints of choice of
the control solution and (c) sufficiency for determination of the
future evolution of the sufficient coordinates themselves (for
the determination of the probabilities of their future values).

In the given problem the limitations of choice | u;| < 1 at
each moment of time ¢ depend on nothing at all, so point (b)
can be disregarded. Point (@) will be considered, and the a
posteriori probabilities w;(4-1) = Pls; =4+ 1/x, < 1] in-
troduced. Then the mean penalities (3) will be written

n=c(L,w,+c(=1Lpw (-1

Requirement (a) will obviously be satisfied if the sufficient
coordinates include the coordinate y and also the a posteriori
probability or a magnitude replacingit, say z = w (1) — w(—1).

The evolution of the variables of the given problem will be
considered. The equation determining the behaviour of y,
depends on the appearance of the function K (p). Obviously

d 1
$—m+mmmk—? ()
and
dy? dy, _
4 TP g =Pt &)
with
k(p)= —23_7];

Assume that 7, is normal white noise (Mn; = 0; Mnn4, =
= N0 (7)). Then in case (4), y; will be (with the fixation of
{u,}) a Markovian process, and the probability of the future

values y;+, will be entirely determined by the value at the .
present . moment of time. In case (5), the two-dimensional

process (¥;, dy;/d¢) is Markovian. The probability of the future
values is determined by these two magnitudes y,, dy,/d¢, and
therefore the sufficient coordinates must necessarily include,
apart from y,, dy,/d¢ for satisfaction of requirement (c). If, for
example, the interference {n,} would be a unidimensional
Markovian process, then 7; should be be included among the
sufficient coordinates.

The mode of variation of z; is now found, and it is proved
that it does not require the introduction of new sufficient
coordinates. The variation of the a posteriori probabilities is
induced by two causes—a priori transfers between states s =1,
s = — 1, and also variation of the a posteriori probabilities as
a result of supplementary observation of the process x;. If there
were no observation, the probabilities w; (4= 1) would vary in
accordance with eqns (2):

DD @+ am (-1
©)
DD )= (1)

If there were no a priori transfers, the a posteriori probabilities
after the observation x,=s 4 &, in the interval 7o <7 <7¢
could be expressed through the probabilities w, (4= 1), before
this observation in accordance with the Beiss formula

w,(s)=constw[&, to<T<t]e o s Wo () ©)
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Here w [£,] is the probability distribution for {&,, f, < 7 < 1]
- which for white noise, as is known, has the form

wlé]= constexp[————f ézdr]

Substituting into this &, = x, — 5, and relating — 1/2k{},
(x,2 + 1) dt to the multiplier C, which does not depend on y, in
accordance with (7), gives

B ¢
w,(s)=Cexp ij X8 dr]wo ()
| K to

From this, differentiation according to 7 gives
dw,(s) [1 dC xs l.
__.L(_):_— - __+__'.. Wr (S) :
dt | C dt  x
Returning to the case of the a priori transfers, eqns (6) and (8)

must be combined. This gives

d“;lgl)z~ﬂw(1)+uw(_1)+|:x,+_1_9§:| (1)

®

DD ()= (- 1)+[*7+€E]W(”1). )

The derivative 1/c dc/dt is determined from the condition of -

retention of the norm d/dz [w, (1) + w; (— 1)] = 0 and proves
equal to — x;/k | [w(1) — w(— 1)]. Substituting this value into
(9) and transferring to the variable z = w (1) — w(— 1), gives
the equation

dz 1-22

= —2uz+ p” X,
which was derived by the author® on the basis of the general
theory.

Since in (10) x; = s; + &, and &, is white noise, the pro-
babilities of the future values are determined by the value of z;
and the behaviour of s, 7 > 7. But since s, is a Markovian
process, its behaviour is determined by the Vvalue of s;, which
~is described by the probabilities w; (s,), that is to say, once
again by the coordinate z;, Hence the introduction of new
variables in.accordance with requirement (c) is not necessary.

Equations (4), (5) and (10) make it possible to write an
alternative equation or Bellman equation for the given problem.
Case (4) will be dealt with first. Introducmg the function of
minimum future risks

T
Sy, z, )= minM{j Ctdrly,,z,}

tg, T2

(10)

(11)

(T is the tlme of termlnatlon of operation), and compiling the
difference of these expressions for the two moments ¢ and
t + 4, gives the equation

M+hm min M
at ‘40

S WosZenad) =S Gozof
{ Vera t+AA) (6252 )+Cz[ynzz}

Ug

(t<t<t+4)

In computing the limit which stands here, a Taylor expansion
by thg increments Yy — V4, Zi44— 23 Will be performed and

(12
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both the linear and quadratic terms will be taken into account.
The differentiability of the risk function is assumed. Eqn (4)
glves

lim Myt+d_yt=ut;lim M(yt+A_yt) =N
40 4 4-0 4

(13)

Computation of the Fokker-Planck coefficients for the second
coordinate z; is somewhat more comphcated In the process, the
equality

M {x|z}=M{s|z} =2,

must be taken into account, eqn (10) must be used, and the
well-known technique of averaging stochastic eqns (10) must be
applied. The result of the averaging has the form

}: —2uz,

: Zypa— 7t
lim M{ 7

4-0
Co1=2? 0 (1-z2\1-27 .
+——K—M{-xtlzt}+a—2t< p )—Z————Zuz, (14)
Moreover '
hmM (yt+A V) Wess—y)=0
4-0
: (Zz+A"Zz)zl } (1=z))" . (Xer5—X)’
lim M lim M——=—~—
4-0 { 4 |Zt K2 gm0 4
22
_{-z) (15)
K
Hence, eqn (12) adopts the form
oS ' oS ~0S- N 9§ (12)62
§+mm|:+-5;i|-2,u +2 0y? IR T P
+C(, y) +C( ly) (16)

The second term can also be written in the form — [0S/ y|.
To the resultant eqn (16) must be added the boundary con-
ditions. In view of the fact that |s| < 1, only the domain |y| < 1
need be considered. Because (16) contains the diffusion term

"1/2N 025/0y? on the boundaries y = 41 there must hold the

conditions

oS
-—(+1,z,)=0 17
5 (1.2 an
Since 0 < w(&) < 1, for the second coordinate one has |z| < 1.
On the sides z = +1 of the square the diffusion coefficient for
the second diffusion number 1/2x (1 — z2) 02% §/0 z2 vanishes.

Therefore, instead of the conditions bS/bz = 0 on these sides
the more trivial conditions

By, +1.0|<e0 (18)

are satisfied.

R will be used to denote the domain of the space of the
sufficient coordinates, where 0S/0y > 0, and correspondingly
R_ where 0S5/0y < 0. The boundary I' between Ry and R—
will be termed the switching line or separatrix; it is to the
finding of this line that the calculation of the OC unit (Figure I)
reduces. On it are satisfied the conditions of continuity of the
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risk function and its first derivatives 9.5/0y, 0.5/0z. These con-
ditions are a consequence of the diffusion nature of eqn (16).
From the continuity of the derivative 0.5/dy there follows the
condition

oS
—=0onT

oy
Eqn (16) describes the evolution of the risk function with the
inverse passage of time. The role of the initial condition for it
is played by the fixation of the risks at the moment of termina-

(19)

tion of the operation S (y, z, T). If there are no special additional °

considerations, then S (y, z, T) can be made equal to zero.

The Bellman equation is also derived in a similar way for
more complex functions K(p). As in case (5), the velocity
v = 0y/0t must be included among the sufficient coordinates.
Then the function S (y,v, z,7) will satisfy the equation

8 ,,085 05 [8S| ) 05 poN 0’5
ot ooy PP Plan| Mz T 2 e
1 o%s 1
LAE2) ;i) S i+ea, y)—+C( Ly)—57=0  (0)

An important particular problem among the group of prob-
lems connected with optimal systems synthesis is the problem of
calculating’ the optimal stationary mode of operation. In this
case the operation-termination time T tends to infinity. Then,
irrespective the values of the coordinates at the moment ¢ a
stationary fluctuation mode is established in the system, char-
acterized by some mean penalty y in a unit of time. This means
that when T increases, e.g., by 4¢, the risk function increases
byy 4t

If the difference S(f) — y (T— ¢) is formed and the limit
transfer T—> oo performed, the resultant function will not
depend on time. In case (4) this function

f(zy)=lim [S(p,z,t)—y(T—1)]

T

as can easily be seen in accordance with (16) satisfies the equation

of|, of N 220, _
ayj___fl_z_ﬁz 26y +2K(1 2)622+y 2yz+1-y

1)

[here (1) is used]. Moreover the same conditions (17)—-(19) are
satisfied on the boundaries as before. The solution of eqn (21)
makes it possible to find simultaneously the function f(y,z),
the switching line I' and the stationary mean penalty y. The
same holds for eqn (20).

Solving the Bellman Equation

In view of the difficulty of obtaining a precise solution of the
alternative equation, various approximate methods can be
developed. Some of them will be illustrated, taking eqns (16)
and (21) as an example. Of course the methods—for example,
the method of parameters—permit generalization to other more
complex cases as, say case (20), but then the laboriousness
of the calculations increases markedly. The results obtained
with the aid of (16) are also approximately valid for case (20),
when ¢ > 1, i.e., when the inertia of the controlled plant plays
a small part and can be disregarded. .

In this case, the optimal control action depends on the
variables y, z, gnd equals # = 1 in the domain Ry (correspond-
ingly, u = — 1 in R). Figure 2 shows the approximate location
of these domains, and of the switching line; the mean transfer .
velocities M dy/dt, M dz/d¢ are also given. An approximate
calculation was performed of the switching line in the stationary
case (eqn 21), by the asymptotic step-by-step method developed
by the author®. For the case N = 0, 2u < 1, the switching line
of the first approximation was found to be

2uy (1- y’)2
1-42 4,u

The higher approximations have an order of (u/k)?* and
higher.

The second approx1mate method of solution, which has a
wider sphere of application, will be dealt with in greater detail.
This method is linked with the determination of the parameters
of the risk function, to which corresponds the unit OP in
Figure 1, as was stated in the introduction. .

One of the ways of introducing the parameters is the ex-
pansion of the risk function according to some preselected
suitable system of functions. For the given example these are
the functions of the variables y and z. Let @y(»), ..., 0,— ()
and v,4(2), ..., ¥, (2) be the selected functions. Then the para-
meters of the risk function will be the coefficients a;;(¢) of the
expansion

z,(¥)=y+ (22)

r—-18-1
S(y,z,0)~ .ZO 'ZO a;; (D e:; (MY, (2) (23)
i=0 j=
Since the above systems of functions are not complete, re-
placement of the risk function by the expression given usually’
entails some errors. To make the coefficients a;; more exact, any
criterion is set, e.g., the minimum integral from the square of
the dlﬂ'erence

1 - ]2 .
j f I:S—Z aij(pilpj] dydz=min
-14J-1 7o

will be required.
The variation of this expression leads to a system of linear
equations

Z_aij ((Pi9 (pe) (w;‘//m) = (Sa (pelpm) (24)

e=0,...,r—1;m=0,...,s—1

which permits a;; to be calculated, if S (,z,7) is known.
Here is written

1 1
((pia %) = TJ‘~ .

1 1 1
(S’ (Pe'//m)=‘_ S (pel/jm dde
4 )-1J)-1 i
With the aid of the inverse matrices

el =100 @l ™5 Il = 100 o Yl ™

the solution of system (33) can be written as

au - z cle C]m (S (Pel//m)

e,m

©:0.4y;

(25)

(26)
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How the equation for the parameters is obtained from the
alternative equation will now be shown. Let the latter have the
form

oS
=7 5] (27)

Differentiating (26) according to time, and substltutmg (27) into

the rxght-hand side glves

u = Z Cie cjm ('/' [S] (pel//m)

If the replacement of (23) is performed here, this will give a
closed system of equations for the parameters

—'—"Z Cie Jm ('j [za qqop‘»pq] (pe‘pm) (28)

The example being considered will be utilized to illustrate
the application of this method. Because of the boundary con-
dition (17) it is convenient to select the functions ¢;(»), each of
which possesses this property dg,/dy (4=1) = 0. For the second
coordinate z, there is no such condition, so

r=s=3;00(y)=¥o (y)=1;¢1(y)=J55in%X;

402(J’)=\/2005ny;lﬁl(z):z;lﬁz(;z):zz -

can be written.
In the given case (¢;,¢,) = ¢;c = 04,3

1 9 15
10 & 707
1 ’
15 ¥mll=4 0 3 0 |ilcjmll=] 0.3 0 (29)
1 1 15 45
0 = -7 0 7

Since the risk function is symmetrical S (y,z,f) = S(—y,—z,t)
(with symmetrical penalties S (y,2,T), then in expansion. (23)
there should be present only symmetrical terms

S(y,z, t)~a00‘+aozz'2+auz\/zsin%y

+(azo+as,z%)f2cosmy - 30)

Moreover, putting ay,y, = xay;; ay, = fay, it is expedient to
make the substitution

a1

oS T T 2\ .
‘W"ﬁ 2008 3y =2(@+p)sinmy
where

pij (d, ﬂ) :e’zmciec}maem R (32)

1J‘1,J'1
Oom=—7
4 -1J -1

2la11[2p11(a B)Q)L(y)zj v (31)

. (y)z"dydz

zcos%j)—2(a—zzﬁ)sinny

550/5

In addition, within the framework of the selected approxi-
mation
32 8 8 n
242 22 :
(=) ~gg—g 25y~ asingy

2,14 CosT
y 3 7'57 y

After the above substitutions, eqn (16), where 1/, ¢ (1,y)
A+2)+Ype(=1,»(A—2) =y*—2yz + 1 adopts the form

da;;
—1 —[alllzplj(plzj

@z’
&5 dt \/ i

+2M [2a4,2° + 01120, +2a,,2°0,]

———K—<§5——722> [ao2 +a22'¢2]
N 7!2 . 2
+2— 4—[a112§01 +4(ay0+0a;3,2°) @,]

2./2 A

3 J </J2+~‘/— z¢y—1
Separately equating the coefficients of the functions ¢;z/

gives five equations for the da;;/d¢ derivatives. The most im-

portant of these are the three equations -

da a n? 8.2
dtu \/—|a11|P11<aj(1) a, )+2#a11+ Nal1+‘\/
daye g0 G323\ 32ay, 7° 2,/2

=" 22822, % Na 4 SN2
ar NG |a11ipzo<a Can) B x +2 dz0t+ 72

da,, 0
N \/2| 11]P22< a. ‘11 2) 44 022+7 +2 Na2(§3)

The switching line is found by equating to zero the derivative
(31). The equation of this line has the form

4(a+BzR)sin-y =275 2r=20 () (34)

The course of the switching line is determined only by the
relations o« = 22° /3 =2 2 of the parameters entering into (33).

As is usual 1n dynamlc programming, eqn (33) must be
solved for the inverse passage of time. If the inverse time
t; = T— t is introduced, the conditions corresponding to the
end of operation will look like ‘initial’ conditions. In the absence
of conclusive penalties at the moment 7 the corresponding con-
ditions will be null:

a1 =dy0=0d,,=0 when t1=0<a=%,ﬁ=0>

When a sufficiently long time ¢ passes, the mode of operation
of the system approaches the stationary. This corresponds to the
approach of the parameters a,;, ay, ds, to the stationary values
a3), a2y, a%. The latter are the solution of the system of three
equations obtained by equating to zero expressions (33).
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Using (29) and (34), formulae (32) can be brought to the form

pir (2, B)=30,;

9 15
P10(a, ﬁ):?O’iO_ZG{Z;

: 45 15
piz (o, /3)='4“0'i2—7<7io;

0..=LJ1 [1_—21;2(:05
T2l ir2

n 11—zt

wy—2<<x

2 j+1
1___ j+3 .

g +B—]_-IT> sin ﬂJ’] @;(y)dy

(35)

For further calculation of the functions g;; (x,f) numerical
methods can be employed, or use can be made of one or another

approximation of the function zr-(»).

The solution of the given problem consists in the fact that
the unit OP (Figure 1) realizes eqns (33) in inverse time, and

unit OC realizes the switching line (34).

: Optimal
| controller oP
|

' |
l i
- n
S| - ° L. "
St Xt X | T
——d)—-Lb DK ocC l PO*

I

Figure 1. Optimal servosystem. SC: sufficient-coordinates unit;

OP:
parameter-determination unit; OC: optimal control unit; CP: con-

trolled plant; DK = SC; 0[] = OP; OY = OC; PO = CP
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The Realization of Optimal Programmes‘-

, ~in Control Systems
| G.S. POSPELOV

1

Methods of mathematical programming [the term is used to
mean the application -of mathematics to the practical activity
of planning, development, decision-making etc., and is a natural
generalization of such concepts as linear (or non-linear) dynamic
programming] are spreading to all branches of the national
economy, economics, enginéering, industry, agriculture and
so on. This presupposes the development of mathematical

models of the events or sets of controlled plants which require |
"to be controlled. Once the aim of control has been formulated, -

the task is to determine the optimum strategy of control whereby
a programme of effects upon the controlled plants produces in
some sense the optimal result.

It must be emphasized that the programmmg methods
determine the strategy of control or a priori programme. The

‘degree of coincidence between the actual result or process pro-

duced by control and the result or process anticipated from the
a priori programme, is indiéative in particular, of the perfection
of the mathematical model or of our knowledge about the
controlled plant.

However, a mathematical model is a model and not the
phenomenon itself, and, apart from this, during the process of
realizing the a priori programme, the controlled plant can: be
affected by a variety of factors and perturbations which are not
taken into account in the model. This can lead to deviations,
and sometimes to substantial deviations, from the programme
results, which by definition  are optimal.

If the programme is time scheduled, use can be made of
feedback to correct the effect of perturbations and inaccuracies
in the ‘mathematical description so as to ensure an actual
programme closer to the optimal one.

The most completely represented by mathematrcal models
are control systems. Taking their case as an example, we will
consider the possible ways of realizing optimal programmes; in
this instance, controll programmes.

‘A mathematical model of a control system is usually formed
by means of ordinary differential equations. The control pro-
gramme is broadly defined to cover the planning of the dynamic
characteristics of the control system, its programme of operation,
and the variation of the relationship. In all cases it is assumed
that the system is provided with complementary feedbacks which
1mprove the realization of the predetermmed programme or a

" priori programme.

(1) The desired dyhamic characteristics of a system are
realized by complementary self-adjusting circuits, which in this
case are complementary feedbacks which improve the realization
of the predetermined 'programme of ‘the control system of
operation. Figure 1 shows the weli-known self-adjusting system
of an automatic pilot which controls the angle of pitch of an

g ' 555/1

aircraft!. The self-adjustment circuit changes the gain of the
angular velocity circuit such that the margin ‘of stability of this
circuit is maintained constant. The correcting circuit 2 is selected
to obtain a sufficiently high gain K. Under these conditions the
transfer function of the closed angular velocity circuit is close
to unity. Therefore, despite the variation of the properties of
the controlled plant (owing to changes in flying conditions), the
dynamic properties of the angle of pitch circuit will be deter-
mined by the transfer function of the .model, i.e..in all cases
they will be quite close to the predetermined or planned prop-
erties. Another example is the self-adjusting control'system with
extremal tuning of the correcting circuits?. Both examples refer
to continuously operating control systems. :

A somewhat special problem arises jin the preservation of
planned dynamic properties for ‘single-action’ systems? for which
the behaviour is significant on a finite interval ¢(0 < ¢ < 1),
and for which the operating process is, as a rule, a transient’

- process. Here one. meets with the problem of maintaining a

desired nature of transient’ behaviour, or a programme of
motion of the representative point in phase space, on condition
that the mathematical model does not exactly describe the
dynamic properties of the controlled plant, nor the perturbations
acting on the latter during the motion. Several possible ways
of solving this problem are now indicated with simple examples.
Let the mathematical model of the controlled plant be

represented in the form
X=u

(1)
where x is the output coordinate and u is the controlling action.
Given the equation of the controller under the form

U= —ayXx

@

the equation of the mathemat1ca1 model of the system as a
whole is

X +dgx=0 (3)
Accordingly, for any initial condition x,, the procéss of motion
is characterized by an exponential with the exponent — a. Now
suppose that there is a suspicion that, in fact, the control object
is described by the equation

X=f(x;u,1) 4)

®

a(f),u, F(t) are random functions and ¢ (x) is also random.
Here it is krnown beforehand that | a (1) ¢ (x) +-F()| < | u|.

where

fxu)=—a(@) ¢ (X)+F () +u

‘
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In this situation one can make a decision concerning the discrete’

control of the plant, such that at each step it is possible to con-
trol the fulfilment of the a priori programme, which is expressed
as a function of time in the following manner:

—at (6)
With discrete control we require for control a relationship
between the value of x (¥) and the value of this coordinate at the
instant of time ¢ + A¢, i.e. the quantity x (¢ -+ Af). According
to (6) this programme relationship is given by the relation

x(t+A)=x(t) e

where At is the interral of discreteness or the step of control.
Using an analogy between the numerical solution of differential
equations by difference methods and the discrete control of
controlled plants, one writes the equation (5) in discrete form

xzxoe

x(t+At) x(t)+f<t+A2> - At ®
where

f(t+é2£>=f|:x<t+-A2—t>,u<t-l-%>, t+§:|

The discrete form (8) of the solution of eqn (5) is used in the
" method proposed by Bashkirov. (The method of Bashkirov is
described in. the monograph by Popovt.) According to eqn (8),
by measuring the value of x (¢) at each step one can select the

increment Au at the instant ¢ 4+ (A#/2) such that x (¢ + Af) is

governed by condition (7). The discrete form (8) is convenient
in that the interval A#/2 is available in the procedure for calculat-
ing Au (¢ + At/2). The iriformation for calculating Au (¢ + A#/2),
. apart from the known value of the desired x (¢+ + A#), is obtained
from the preceding values of Au and x. In the general case
Au (¢t + At/2) is calculated by the formula:

Au<t+%>=An(t—%) 1//|:x(t+At), ( g’),x(t_At)]

)
The form of the function y depends on the particular theory of
extrapolation which is adopted.

The information about the preceding values of x and « also
includes information about changes in the properties of the
object and of the perturbation F (2). The use of this information
for calculating Au (¢ + At/2) represents the additional feedback
signals, or self-adjusting signals, and makes it possible to realize
more accurately the desired programme of motion more exactly®.

Equation (5) and its results can be generalized without
difficulty to multi-dimensional systems of any order. In this
case .the equation of the controlled plant in the vector form is

X (10)

where X is the vector with the components x; ¢ = 1, 2, ..., n),
fis the vector with the components f; (¢ = 1,2, ...,n), and U is
the control vector with the components u; (z =1,2,...,9);

y=n

The maintenance of planned dynamic properties of single-
action systems can also be realized by a continuous control.
Suppose, for example, that the mathematical model of the
controlled plant is written in the form .

)

5c‘+a;5c=u (an

and | u| < u,. -
Suppose also that it is requ1red to realize the system with
maximum operating speed. According to Pontryagin’s principle®

. of the maximum, the equation of the controller is of the form

(12)

u=—u 'sign[x+f(a1,5‘)]

However, there is a suspicion that in fact the controlled plant
can be described by the equation .

Cxt+ak() %+ak(t) x= u+F(t) (13)

In view of the incomplete information about al* o), a* (1 and
F(¢) it is impossible to prescribe the control law of type (12)
which ensure the maximum operating speed. }

In view of this one proceeds as follows, forming the accelera-
tion control circuit X = n by means of the controlling action «
(Figure 2). If the pass band of this circuit is sufficiently high the
error &, = n,, — n will be close to zero and the programme
acceleration will be equal to the actual acceleration. In more
complex cases thé acceleration control circuit, like the pitch

~ angle control circuit (Figure I), can be a-self-adjusting circuit.

If now the programme acceleration is close to the actual accelera-
tion, any desired variation of the coordinate x and its derivative
may be required. Thus, to form the system of maximum operat-
ing speed in accordance with the mathe1nat1cal model (11), it is
sufficient to put

X

(14)

The block diagram-which realizes (14) is shown in Figure 3.

p=X=—a;X—u,sign [x+f(a1,x)]

In expression (14) 4, is always less than «; since some part of the’

control resource uy = u; goes to compensate the perturbation
F () and to compensate the difference between the coefficients
a,* () and ay* (¢) on the one hand and the coefficients of the
mathematical model a; and @y = 0 on the other. Thus, at the
expense of some reduction of operating speed (since u; < ug)

a definite realization of the programme for the optimum

transient process is obtained.

-Any other law of variation of the coordinate x can be
required i in this example. It may, for example, be required that
the transient process should take place in accordance with the
solution of a linear equation with constant coefficients

(15)

For this, it is obviously necessary to put X,, = — a;X'— ax.

Figure 4 shows oscillograms which have been obtained on
the electronic simulator. for the case when [ a,* (£)] < 0-05;
a* () < 1:0; a = 04; gy = 0004. The gain of the servo
motor of the acceleration control circuit was taken as 10 1/sec.
It will be seen from the oscillogram that the perturbation F (f)
and the fluctuations of the coefficients a;* (f) and a,* (f) have
no effect on the course of the coordinate x which is governed by
the solution of eqn (15).

" The results explained by this example are also capable of
very ‘wide generalization. The generalization consists in that
for a known indeterminacy of the properties of the controlled
plant and of the acting perturbations it is advisable to organise
a self-adjusting subsystém of rapidly varying coordinates of the
controlled plant or of its higher-order derivatives. After the
programme variation of the rapidly varying coordinates or of

56+,al >'€+a0x=0
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their higher-order derivatives has been largely determined by
this subsystém, the law governing the variation of the slowly
varying coordinates or lower-order derivatives of the output
quantity of the controlled plant can be built as desired. The
additional feedbacks which make it possible to realize the
required programme of dynamic properties of the system in the
example under consideration are the feedbacks amongst which
are the self-adjusting circuits for acceleration control.

Very often the realization of desired dynamic properties for

single-acting systems is handicapped by unfavourable combina-
tions of initial conditions. In non-linear systems these unfavour-
able combinations of initial conditions can lead to instability
of the process for a given realization. The effect of unfavourable
combinations of initial conditions can be eliminated by changing
the initial.values of the coordinates and by the formation of special
signals which act on the system and which are functions of the
initial conditions. Briefly, this means creating special feedbacks
with respect to the initial conditions. The idea of using feedback
with respect to the initial conditions has already been pubhshed
in a paper by the author®.

(2) In developing systems with programme control of the
output coordinates of the controlled plant use may, to a large
extent, be made of the foregoing ideas and methods which relate
to the realization of programmed dynamic properties of control'
systems.

Suppose, for example, that it is required to vary accordlng

to,the programme g, () the output coordinate x () of the con-.

trolled plant (Figure 5). For this the input of a closed system
consisting of the controlled plant and the controller receives the
programme signal g, (f). For a system with a high pass band,
if no perturbations are present, it is well known that x = g,,.(9).
However, a random perturbation which is not taken into account
can considerably distort the desired programmed variation of
Zo-(®. In order to fulfil more accurately the programme, an
additional feedback is formed (shown by the dotted line in
Figure 5) and the programme correction circuit abedega is there-
by formed. The programme signal g, (¢) is compared with the
actual signal and the difference signal acts at the input to the
fundamental system via a self-adjusting correction circuit with
a high gain Wx. The correction circuit may consist of the
elements 2, X, 6,7, 8,9, 10 and 11 which are shown in Figure 1.
Assuming, for the sake of simplicity, W, = K, the following
operator relationship is obtained between the input and output
for the circuit of Figure 5:

¢ (1+K) _00 (P)

where
__ W W,
¢® 1+ W, W, and ¢, (p)= T+w,w,
and expression (16) can be written as
1
¢(p) <—+ 1>
=t L 042D Lrey )
gt REA,
It will be seen from (17) that if K—> oo
x=g, (1) (18)
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independently of the action of the perturbation F(¢) and the
fluctuations of the parameters of the controlled plant. It is
understood that in this case condition (18) is fulfilled approxi-
mately since K = oo is not realizable in actual conditions.

Another example of programme control is the method of
stabilizing acceleration (Figure 2 and 3) with subsequent con-
struction of the desired programmed variation of the coordinate
X, by means of a computer.

Using this method the ‘logarithmic navigation’” can be
realized when the acceleration according to the programme
k X/x, and consequently, the coordinate x is the solution of the
differential equation

xX—kx=0

A very important case of programme control-is that when it is
important -to maintain a functional relationship between one
coordinate and another. For example, the optimum programme,
as regards operating speed, for the altitude and speed of an
aircraft, as calculated, for instance, by the method of dynamic
programming, is a programme in the coordinates H and V,
i.e. it is given as a functional relationship H,, = H,, (V,.)-
(Figure 6), both the quantities H and ¥ here being the output’
coordinates of an aircraft controlled by the altitude rudder (the
thrust of the engine is usually maximum in this case). The
relationship H,, = H,, (V,,) can always be represented para-
metrically: ’ .

H, =H, ()
V(1)

The altitude control circuit H can now be formed by the usual
method (Figure 7). If the system is unaffected by perturbations
and the calculated characteristics of the aircraft coincide with
the actual characteristics, and if the atmosphere through which
the aircraft is flying remains standard, the completion of the
programme H,, (1) will at the same time imply the completion
of the programme ¥V, (f), and consequently of the programme
relationship H,, = H,, (V,,). However, if all the stated condi-
tions are not fulfilled, the completion of H,, (¢) will not generally
imply the fulfilment of V), (f), and consequently the completion
of H,, = H,, (V). For the planned programme H,,, = H,, (V)
to be fulfilled with acceptable accuracy, it is necessary to intro-
duce a programme correction circuit®. For this purpose the
programme value of speed is compared with the actual speed
and the difference in terms of the transfer function W, changes
the rate at which the programme is delivered, i.e. the speed of
the clocks of the programme mechanisms H,, and V,,, (Figure 8).
As a result the speed of the clock mechanism of the programme
is not uniform and the programmes H,, and ¥V, become func-
tions of some irregularly varying argument 7, i.e. H,, (r) and
Ve (). Elimination of the argument 7 again brings us back to
the original relationship H,,;(V,,): However, insofar as the rate
of delivery of the programme signal H,, at the input of the system
conforms to the fulfilment of the speed programme, the accuracy
of the realization of H,, = H,, (V,,) is substantially increased.
A similar circuit can be constructed for the motion of some
controlled plant along a prescribed unperturbed trajectory
Ve =¥, (x,) in the coordinates x, y (Figure 9). However, this
report is confined to the plane problem. Suppose that the speed
of the object is 7 and that the orientation of the speed vector
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is characterized by the angle . The obvious: relationship bet-
ween the coordinates x, y and the speed is expressed as follows

y=Vsiny+W, L (19)
x=Vcosyy+ W, (20)

where W, and W, are perturbations in the form of speeds of
displzczment of the environment relative to the system of co-
ordiaates x, y. [In the formulae (19) and (20) the actual values
of thé coordinates of the controlled plant are used. The values
of the desired unperturbed trajectory are denoted as x, and y,.]
Consider the kinematic problem, i.e. suppose that the angle ¢

~ of the speed vector can be arranged arbitrarily. On this assump-

tion the control circuit for the coordinate y is formed. Here it
is required that )
siny=k,¢ . 21)
where . . .
‘ E=Ypr=Y @)
the term ¥, = y,, (f) here being the programme value of the
coordinate y, which does not coincide, as will be seen below,
with the unperturbed value y, = y, (¥).

The equation for the coordinate y is found from the equa-
tions (19), (21) and (22):

V+Vk, y=Vk, y, ()+W, (23)

" Assuming y = y, + Ay, we obtain now the equation for the

deviation Ay from the unperturbed motion
AJ.)_{_VkeAszke(ypr_ye)_..ye-{_VVy (24)

It is worthwhile selecting the programme signal y,,, in accordance
with the formula

Y=Y+ VJ ]z (24a)

For this value of the programme signal, eqn (24) becomes
Ay+VEk Ay=W, .(25)

This implies that in the absence of the action W, the deviation
from the unperturbed projectory will tend to zero A constant
action will cause a constant error.

The control block diagram for the coordinate y is shown in
Figure 10. It is obvious that a single control circuit according to
the coordinate ¥ cannot ensure the necessary control of the
coordinate x or the fulfilment of the required programme
Ye = Yo (x,). According to the circuit shown in Figure 10, the
coordinate x varies according to the expression

\

t ) t t
x=VJ cosn//edt—Vf tany, -Aydt+ | W,dr (26)
0 0 0o

The first term in eqn (26) is the desired unperturbed value of
X = x,, the second term can be limited, since it is determined

. by the error in the circuit for the stabilization of y, and the third

term for W, = const will continuously increase. In order to
realize the programme of motion along the unperturbed trajec-

tory it is necessary to proceed in the same way as in the previous -

case (see.Figure 8), i.e. it is necessary to form, by measuring the
error x,, — X, a signal which acts on the speed of the programme
mechanism y,, (r) and x,,, (z).

It should be noted that it is much simpler to correct the
programme by varying the speed of tie programme clocks if
in the first example d¥/d¢ > 0, and in the second example if
dx/dt > 0. Generalizing, this method of correction to the pro-
gramme of a system with n coordinates and y controlling devices,
we shall note that in this case the argument of control (the non-
decreasing coordinate V in the first example, and the non-
decreasing coordinate x in the second) should be any constant

~ sign form of system derivative®.

Frequently this form of coordinate originates naturally from
the statement of the problem. For example, this is the case if it
is required to control the ingredients of a mixture as a function
of the volume of this mixture when this volume is varymg ina
monotonous way.
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for the angular velocity & and the angle 9, 6, 7 — detectors; 8, 9 — high
and low pass filters; 10 — servo motor; 11 - limiter
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